Perceptive Connect Runtime Database
Connector
API Guide

Version: 2.x for Perceptive Connect Runtime, version 2.0.x

Written by: Product Knowledge, R&D
Date: June 2019

Hyland

© 2015-2019 Hyland Software, Inc. and its affiliates.

Perceptive Connect Runtime Database Connector APl Guide

Table of Contents

Perceptive Connect Runtime Database ConNECtOr APl........coo i 5
o] o Tol o | I o= Ted 1€ Vo [T PPPTU PR 5
] (o O = T =T TSP PP PP PPRPPP 5

(67] a1 e =Tot i o]0 [o] {o B ST PR PP PP PPPPPP 5
STALEIMENTINTO. ...ttt e e e bt e e e b e e s e b e e e e e b e e e e e b e e e b e e e anres 5
D)= 4|] (o T SO P PP PUPPTPPPP 6
[(011101 PO P PP PUPPTRPPPN 7
(6 S=T 4]) (o P T OO RPPPPPPRRPRP 7

] o T o= Ted o] g T=T ST PR OP PP OPRPT 8
(O] a1 aT=Tox 1 o] Y[a] 0] = Tod 1o] YOS 8
ConnectionInfoFactory IMpPIEMENTALIONSuiiiiiiiii et e e ee e 8

FromPifCoNNECtiONINfOFACIONYccci i e e e e s e e e e s e s snrreereeeeeeennnnes 8
TalT=Tetefo] o [@fo] T aToTox ifo] 0] g o] r=Tox 1o] V2RSSR 9
StAtEMENTINTOFACTONYeeiiiiiiete ettt ettt e e e e e e e bbbttt e e e e e e e s bbb b e e e aaaesaaanbbeeeeaaaeeaannnes 9
StatementInfoFactory IMpPIEMENTALIONS........coii it a e s e ee e e e e e aanes 10
FromPifStatemMentINfOFACTONYuuiiiiiie et e e 10
INjectioNStateMENTINTOFACTONYooi ettt e e e e et e e e e e e e e snbbeaeeeaeeeeannes 10
StateMeNntEXECULOr AN RESUIL........coiiiiiiie et e e srne e e e 10
SEAtEMENTEXECULON ... e e s s s re et e e e e s s nrnne e 10
RESUIL ...ttt b e sttt e b et e s h bt e e e b et e e R R e e e b et e e R R e e R et e e Rn e e e bt e e b r e ere e nreas 11
EADC.CONNECE.SEIVICE .ottt b et b et e s b e et e e e saneesnbe e e anreesnneeennes 12
CONNECHIONSEIVICEeeiiiitiiie ettt ettt e e a bt e e s bttt e e sa b e et e e aa b et e e e aabe et e e aabb e e e e anbb e e e e annbeeeeannneee s 12
DataSoUrCECONNECHIONSEIVICEeiiiiiiiiieiereie ettt et nr et ssre e s e e nn e sneeennnees 12
P araMEIEIIMBIALY P ... s 12
e e Lo =T g Y o OO PP PP PPPPPPRPPTPRN 13
DAteTime FOIMALINGeeieiiiiiieeii ettt e s ab et e e s abb e e e e nbe e e e e enbbeeeeanenes 14
=][[0 IS (] o LTS PSP U PP OTPSP P 15
CONCUITENCY TYPE. ..ttt 15
CUISOITYPE e 16

EdDC.CONNECT.COMPONENT ...ttt oottt e e e e e b ettt e e e e e e s bbb be e e e e e e e s annbbbeeeaaaeeeannbeneeas 16
T (o] = T3 (0] 1Y/ = T T= To = RS S 16
e To]a a1 =1 (@] gl aT=Tox 1To] o1 [T 0] = Tod 1o Y28 OSSR 17

FromPifStatemMeENtINfOFACIONYciiiiii e e e e e e e s e e e e e e e e s s s sanrenaeeeeeesannnnes 17

Perceptive Connect Runtime Database Connector APl Guide

ApPPENiX Al RESUIT BERAVIOT ... it e e e e e sttt e e e e e e e s anbbeeeaaae s 18
TYPE_FORWARD_ONLY-CONCUR_READ_ONLY ..ottt 18
TYPE_FORWARD_ONLY-CONCUR_UPDATABLEcottiiiiiiiiieeie ettt 18
TYPE_SCROLL_INSENSITIVE-CONCUR_READ_ONLY ...ttt 18
TYPE_SCROLL_SENSITIVE-CONCUR_READ_ONLYoueiuieieeeeeeeeeeeeeeeeeee e et ere s 18
TYPE_SCROLL_SENSITIVE-CONCUR_UPDATABLE ... 18
DATABASE_DEFAULT-DATABASE _DEFAULT ... s 19

L0 aTSI01 o] o o] (=70 I @] 4] o] 4 T= L1 0] 1S SR 19

APPENiX B: JPA INTEGIALIONeeiiiiiiiiie ettt et et b e e e sabe et e e aabbe e e e annneeeas 20
Option 1: Non-JTA DataSource in PersiStence UNItooouuiiiiiiiiiiiiiieeeee et e e 20
Option 2: NON-JTA DataSOUrCe iN COUEcciiiiiiiiiiiiiiiee ettt e e e e e et e e e e e e e e e snbbereeeaaesaaanes 21
Option 3: Directly Obtain the DataSource from JNDI...........ccciiiiiiie e 21
Option 4: BiNA t0 DALASOUICE......ceeieieiiiiiiiieiee e e e e s sitrte et e e e s s e sitee e e e e e e s sastatteeeeaaesssasbareseeaeessssssrnseeeeeessansnns 22
JINDI PROVIAEIS ...ttt ettt sttt s ke e e n et e ser e e s e e e e m et e s r e e e ne e e nnne e e nnneennnee e 23

JLIL (e 181 011 T o 11T SRR 23

Perceptive Connect Runtime Database Connector APl Guide

Perceptive Connect Runtime Database Connector API

The Perceptive Connect Runtime (PCR) Database Connector provides a centralized interface for
managing how PCR components and developers access your databases. The Database Connector
provides features for external access to your configured Statement and Connection Descriptions through
a REST API. Using Java Database Connectivity (JDBC), you can execute statements that query your
database and return database results sets.

Edbc.sqgl package

The edbc.sql package contains the classes that wrap the JDBC interfaces. The classes in this package
create and store the information needed for database connections and prepared SQL statements. This
package also provides classes that execute and report the results of a prepared statement.

Info Classes

The info classes are lightweight, immutable plain old Java objects (POJOs). You must create
Connectioninfo and Statementinfo instances using the respective Info Factories. You may instantiate the
Driverinfo, HostInfo, and UserInfo classes directly.

Connectioninfo

A ConnectionInfo contains the information needed to create a database connection. Each
Connectioninfo contains two Strings and three info classes. The Strings represent a connection’s
database name and description, and the info classes are Driverinfo, Hostinfo, and Userinfo. The
ConnectioniInfo has a getter for both strings; each info class; the Driverinfo’s driver class name, driver
name, and driver version; the HostInfo’s host name, port, and network protocol; and the UserInfo’s user
name and password. The Strings and info classes are never null, but the port, network protocol, driver
name, and driver version may be null.

Unless you need direct control over a database connection, always use a Connectioninfo. A
Connectinolnfo does not contain a database connection, so you can pass it around PCR without risking
a resource leak. Additionally, the Database Connector components and services that handle database
connections only accept Connectinfo instances.

Statementinfo

A Statementinfo contains the information needed to create and execute a PreparedStatement. Each
Statementinfo contains an SQL statement, a String-ParameterMetaType Map of input parameters, a
String-ParameterMetaType Map of output parameters, a CursorType, a ConcurrencyType, and the
Connectioninfo that the StatementExecutor uses when it executes the prepared statement. Each
property has a getter.

The StatementInfo’s input parameter Map is an ordered ImmutableMap that describes how the
StatementExecutor passes information into a parameterized statement. The Map's keys provide labels for
each parameter in the statement, and the Map's values describe the corresponding type for each
parameter. The keys can be any non-null, non-empty String. The order of the keys determines the order
that the StatementExecutor applies the values to the statement. If the Statementinfo’s SQL statement is
not parameterized, then the Statementinfo has an empty input Map.

Perceptive Connect Runtime Database Connector APl Guide

The StatementInfo’s output parameter Map is an ImmutableMap that describes the values the Result
extracts from the executed statement's ResultSet. The Map's keys must match the columns that the
Result will extract from the ResultSet. If the statement selects * , then the keys must match a column
from the target table. The output Map's values describe the expected type for each output column. The
order of the output parameters is irrelevant. If the Statementinfo’s statement does not return a ResultSet,
then the Statementinfo has an empty output Map. If you plan to retrieve only the ResultSet from the
executed statement, then the output parameters are optional.

The CursorType and ConcurrencyType represent static integers from the ResultSet. These integers
determine the behavior of an executed statement's Result wrapper and ResultSet. For the supported type
values, refer to CursorType and ConcurrencyType.

The type values have two limitations. If either your CursorType or ConcurrencyType is
DATABASE_DEFAULT , then the other type must be DATABASE_DEFAULT . There are two reasons for this
limitation.

e You cannot set a ResultSet's cursor and concurrency types separately.
e The database does not report its default cursor and concurrency types.

Additionally, TYPE_SCROLL__INSENSITIVE only works with CONCUR_READ_ONLY. This requirement is a
limitation of the underlying ResultSet.

For information on the different Result behaviors, see the Appendix A: Result Behavior.

Driverinfo

A DriverInfo contains the information a ConnectionService needs to select a database connection’s
driver. Each Driverinfo contains three Strings: a driver class name, a driver name, and a driver version.
Each String has a getter. The driver name and version may be null or empty, but the driver class name
cannot be null or empty. A null or empty driver name or version indicates that the desired driver was not
registered with the respective property. Because a ConnectionService uses null to represent driver
information that is "not present," a Driverinfo stores empty Strings as null values. If the driver name or
version does not matter, use the static String DriverInfo.ANY during construction for the respective
arguments.

DriverInfo has the following constructors.
e DriverInfo(String driverClassName)
e DriverInfo(String driverClassName, String driverVersion)

e DriverInfo(String driverClassName, String driverVersion, String
driverName)

The first constructor creates a DriverInfo that allows a ConnectionService to use a driver that has the
given class name and any name or version. Similarly, the second constructor creates a Driverinfo that
allows a driver with the given driver class, name, driver version, and any driver name. The third
constructor only allows the ConnectionService to use a driver with the given driver name, class name,
and version.

Perceptive Connect Runtime Database Connector APl Guide

HostInfo

A HostInfo contains the information a ConnectionService needs to initiate a database connection. Each
HostInfo contains three Strings: a host name, a port, and a network protocol. Each String has a getter.
The port and network protocol may be null or empty, but the host name cannot be null or empty. A null or
empty network prootoocol indicates that the ConnectionService will use the default protocol when it
initiates the connection. Similarly, a null or empty port indicates that the ConnectionService will use the
default port. Because a ConnectionService uses null to indicate default options, a HostIinfo stores empty
strings as null values.

HostInfo has the following constructors.
e HostInfo()

e HostInfo(String hostname)
e HostInfo(String hostName, String port)
e HostInfo(String hostname, String port, String networkProtocol)

The first constructor creates a HostInfo that has a null host name, the default port, and network protocol.
The second constructor creates a HostInfo that has the given host name, the default port, and the default
network protocol. The third constructor creates a Hostinfo with the given host name, given port, and the
default network protocol. The fourth constructor creates a HostIinfo with the given host name, port, and
network protocol.

Userinfo

A UserInfo contains the account information needed for a ConnectionService to initiate a database
connection. Each UseriInfo contains two Strings: a user name and password. Each String has a getter.
Both values may be null or empty. A null or empty value indicates that the account does not have the
associated value. Because the ConnectionService uses empty strings to represent that an account does
not have a given property, a UserInfo stores null values as empty strings.

UserInfo has the following constructors.
e UseriInfo(Q)

e UserlInfo(String username, String password)

The default constructor creates a UserInfo for connections that do not have a user name or password.
The second constructor creates a UseriInfo that has the given user name and password.

Perceptive Connect Runtime Database Connector APl Guide

Info Factories

The various info factories build new Connectioninfo and Statementinfo classes using different sources.
These factories are the only way to construct new info class instances. You can create your own info
factory classes, but your factories must extend the abstract factory associated with the desired info type.
The InfoFactoryManager controls all the info factories installed in PCR. If your info factory is completely
stateless and does not rely on anything inside PCR, then you can bypass the InfoFactoryManager and
directly instantiate your info directory.

ConnectioninfoFactory

ConnectioninfoFactories construct new Connectioninfo instances. Every ConnectioninfoFactory must
extend the AbstractConnectioninfoFactory. All concrete factories must use the following method to
create new instances.

protected Connectionlnfo make(String databaseName, String description,
DriverliInfo driverinfo, HostInfo hostinfo, UserInfo userinfo)

The arguments of the protected make method correspond directly to the values of a Connectioninfo.
Additionally, concrete factories must implement two methods from the ConnectioninfoFactory interface.

e public String getName();
e public ConnectionInfo make(String identifier);

The getName method returns the concrete factory’s name. The InfoFactoryManager uses a factory’s
name for storage and retrieval. Unless your factory requires a specific name, use the factory’s simple
class name. The simple name reduces the chances of a name conflict inside PCR. If you do not use the
factory’s simple class name, you should implement a static method or field to get the factory’s name
without an instance of the factory.

The public make method accepts a single String used to identify the Connectioninfo that the factory
should make. If your concrete factory cannot construct a ConnectionInfo instance using a single String,
then your make should throw an UnsupportedOperationException.

ConnectioninfoFactory Implementations
The edbc.sql package provides two concrete ConnectioninfoFactories.

e FromPifConnectionlnfoFactory

e InjectionConnectionlnfoFactory

FromPifConnectioninfoFactory

When you need a ConnectionInfo from the PCR’s configuration Ul, use the
FromPifConnectioninfoFactory. The FromPifConnectioninfoFactory creates Connectioninfo instances
using information stored in PCR as ConnectionDescriptions. Use PCR'’s configuration Ul to create
ConnectionDescriptions. (For more information on ConnectionDescriptions, see the Perceptive Connect
Runtime Database Connector Configuration Guide.) This factory supports make(String
identifier), and the factory uses ConnectionDescription names as the identifiers.

Perceptive Connect Runtime Database Connector APl Guide

Note Do not store ConnectionInfo instances created using this factory. If PCR updates a
ConnectionDescription, then PCR does not update any corresponding ConnectionInfo instances. To
avoid using a stale instance, always create a new ConnectionInfo instance immediately before you need
it.

InjectionConnectioninfoFactory

When you need to programmatically make a new ConnectionInfo from its raw components, use the
InjectionConnectininfoFactory. The InjectionConnectioninfoFactory is a stateless factory, so you can
directly instantiate it. This factory does not support make(String identifier). Instead, this factory
provides a public version of the AbstractConnectioninfoFactory’s protected make. This public make
accepts a String database name, a String description, a Driverinfo, a HostInfo, and a UserInfo.

StatementinfoFactory

StatementinfoFactories construct new Statementinfo instances. Every StatementinfoFactory must
extend the AbstractStatementinfoFactory. All concrete factories must use one of the following methods
to create new instances.

protected Statementlnfo make(String sql,
Map<String, ParameterMetaType> intputParameters,
Map<String, ParameterMetaType> outputParameters,
Connectionlnfo connectionlnfo)

protected Statementlnfo make(String sql,
Map<String, ParameterMetaType> intputParameters,
Map<String, ParameterMetaType> outputParameters,
Connectionlnfo connectioninfo,
CursorType cursorType,
ConcurrencyType concurrencyType)

The arguments of these protected make methods correspond directly to the values of a Statementinfo.
Additionally, the concrete factories must implement three methods from the StatementinfoFactory
interface.

e public String getName();
e public Statementinfo make(String identifier)

e public Statementinfo make(String identifier, Connectioninfo
connectionlnfo);

The getName method returns the concrete factory’s name. Like ConnectioninfoFactories, the
InfoFactoryManager uses a factory’s name for storage and retrieval. Unless your factory requires a
specific name, use the factory’s simple class hame. The simple name reduces the chances of a name
conflict inside PCR. If you do not use the factory’s simple class name, then you should implement a static
method or field to get the factory’s name without an instance of the factory.

The make(String identifier) method accepts a single String used to identify the Statementinfo
the factory should make. The make(String identifier, ConnectionInfo connectionlinfo)
accepts the same identifier as make(String identifier) to identify the Statementinfo the factory
should make. However, the two-argument make uses the given Connectioninfo to overwrite the
Connectioninfo used by make(String identifier). If your concrete factory cannot construct a
StatementInfo instance using either make method, then the unsupported make methods should throw
and UnsupportedOperationException.

Perceptive Connect Runtime Database Connector APl Guide

StatementinfoFactory Implementations
The edbc.sql package provides two concrete StatementinfoFactories.

e FromPifStatementinfoFactory

e InjectionStatementinfoFactory

FromPifStatementinfoFactory

When you need a Statementinfo from PCR's configuration Ul, use the FromPifStatementinfoFactory.
The FromPifStatementinfoFactory creates Statementinfo instances using information stored in PCR as
StatementDescriptions. (For more information on StatementDescriptions, refer to the Perceptive Connect
Runtime Database Connector Configuration Guide.) You use PCR's configuration Ul to create
StatementDescriptions. This factory supports both make methods. The factory uses StatementDescription
names as the identifiers and accepts any valid Connectioninfo instance.

Do not store Statementinfo instances created using this factory. If PCR updates a StatementDescription
or a StatementDescription's ConnectionInfo, then PCR does not update any corresponding
Statementinfo instances. When using this factory, always create a new Statementinfo instance
immediately before you need it to avoid using a stale instance.

InjectionStatementinfoFactory

When you need to programmatically make a new Statementinfo from its raw components, use the
InjectionStatementinfoFactory. The InjectionStatementinfoFactory is a stateless factory, so you can
directly instantiate it. This factory does not support make(String identifier) but does support
make(String identifier, Connectionlnfo connectionlnfo) . This two-argument make
uses a String SQL statement as the identifier. The new Statementinfo uses the given Connectioninfo
during execution and does not have any input or output parameters.

In addition to make(String identifier, ConnectionInfo connectionlnfo), this factory
provides public versions of the AbstractStatementinfoFactory's protected make methods. These make
methods accept a SQL statement String, an ordered String-ParameterMetaType Map for input
parameters, a String-ParameterMetaType Map for output parameters, and a Connectioninfo to use
during execution. The second make method also accepts a CursorType and a ConcurrencyType, So you
can override the default Result behavior using these type arguments. For information on the different
Result behaviors, refer to Appendix A: Result Behavior.

StatementExecutor and Result

The StatementExecutor and Result are the Database Connector’s primary SQL classes. These classes
use the Info Classes to create and execute statements and to retrieve SQL results. You can instantiate
the StatementExecutor anywhere you need it, but only the StatementExecutor can create new Results.
Additionally, the StatementExecutor can execute compound SQL statements, but the Result class only
reports the first statement’s ResultSet and update count.

StatementExecutor

The StatementExecutor executes prepared SQL statements and wraps the executed statements in
Results. The StatementExecutor uses a ConnectionService to create database connections for its
prepared statements. The StatementExecutor’'s Constructor allows you to create an executor with any
ConnectionService.

A statement executor uses the executeStatement() method to create and execute prepared SQL
statements.

public Result executeStatement(Statementlnfo statementlnfo, Map<String, Object>
parameters)

The executeStatement() method accepts any valid Statementinfo and a String-Object Map. The
Map contains the values the executor will assign to the prepared statement. The method’s Map keys must
match the Statementinfo’s input parameter Map keys. The executor ignores any extra values in the
method’s Map, but if any values are missing, then the method throws an EdbcException. For each
corresponding key in the method’s Map and Statementinfo’s input parameter Map, the object’s class
from the method’s Map must match the ParameterType from the Statementinfo’s input parameter Map.

Result

The Result class is a wrapper for executed SQL statements. The Result is an auto-closable resource, so
make sure that you place Result in a try-with-resource or call close when you are finished with it. An
open Result contains an open Statement and Connection, and it may contain an open ResultSet. If you
never close a Result, then that Result’'s Connection will never close.

A Result provides two methods for determining its current state.

e public boolean isClosed()

e public boolean isResultSet()

The isClosed method determines if the Result’'s Connection, ResultSet, or Statement is closed. If the
Connection, ResultSet, or Statement is closed, the data retrieval methods fail. After a Result is closed,
you cannot reopen it.

The isResultSet method determines if the executed statement’s data is a ResultSet. The value of the
isResultSet is the value returned by an SQL statement’s execute method, but this method does not
re-execute the SQL statement.

The Result class also provides two methods for determining its ResultSet’s behavior.

e public CursorType getCursorType()

e public ConcurrencyType getConcurrenyType()

The combination of CursorType and ConcurrencyType determine how you may access data from the
ResultSet. For the different Result behaviors, refer to Appendix A: Result Behavior.

Result provides three primary methods for retrieving data from your statement.

e public List<Map<String, Object>> getResultList()
e public ResultSet getSqlResultSet()

e public int getUpdateCount()

Perceptive Connect Runtime Database Connector APl Guide

Additionally, the Result provides one helper method for ResultSet data.

e public Map<String, ParameterMetaType> getOutputParameters()

The getSqlResultSet method returns the executed statement’s ResultSet, and getUpdateCount
returns the number of rows affected by the executed statement. Both methods behave like the SQL
Statement’s equivalent methods, except you can call the Result methods more than once.

If the Statementinfo used to create a Result has output parameters, then the getOutputParameters
method returns a String-ParameterMetaType Map representing the column names and expected types of
the data in the ResultSet's rows. If the Statementinfo does not have output parameters, then
getOutputParameters returns an empty Map, so you need to get the expected column names and
types from another source.

The getResultList method extracts row data from the executed statement’s ResultSet and returns the
data as an ordered List of String-Object Maps. Each Map represents a row from the ResultSet, each Map
key represents a column from the row, and each value represents the data at the row-column location.
The getResultList method does not limit the size of the return List nor does it page the ResultSet's
data, so large ResultSets may take a long time to extract. If the Result’'s executed statement does not
have output parameters or if it does not return a ResultSet, then getResultList returns null.

Edbc.connect.service

The edbc.connect.service package contains the Database Connector’s helpers and services. You
can instantiate these classes, as you need them.

ConnectionService

ConnectionService is an interface for classes that create a java.sql .Connection using a given
Connectioninfo. Every ConnectionService class must implement the following functionality.

public java.sqlConnection makeConnection(Connectionlnfo connectionlnfo)

The StatementExecutor requires a ConnectionService to create and execute prepared SQL statements.
The Database Connector wraps the connections created through this service, but you can use a
ConnectionService to retrieve an exposed java.sqgl .Connection.

DataSourceConnectionService

The DataSourceConnectionService is a ConnectionService that uses DataSources and
DataSourceFactories to create new java.sqgl .Connections. You must install your drivers and
DataSourceFactories before you can use this implementation.

This service requires a BundleContext for its constructor, so you must use a PCR component or service
to create a DataSourceConnectionService. This ConnectionService uses the BundleContext to retrieve
the DataSourceFactories from PCR.

ParameterMetatype

ParameterMetatype is a Class that controls the information about a Parameter. It holds three pieces of
information about a parameter: label, type, and format. The label is how the Parameter is associated with
the data received as an Input Parameter, or as the data passed back as an Output Parameter. The type
is the ParameterType for the object. The format is optional. It is only supported by three ParameterTypes:
DATE, TIME, and TIMESTAMP.

Perceptive Connect Runtime Database Connector APl Guide

ParameterMetatype provides two different constructors.

e public ParameterMetatype(ParameterType type, String label);

e public ParameterMetatype(ParameterType type, String label, String format);

Additionally, ParameterMetatype provides a single static method to parse a Parameter String into a
ParameterMetatype. For more information on Parameter Strings, see "Statement Description Parameters
in the Perceptive Content Runtime Database Connector Configuration Guide.

e public static fromString(String metatype, String delimiter);

ParameterMetatype provides two different methods of Object conversion: Object -> String and
String -> Object.

e public String formatValue(Object value);

e public Object parseObject(String string);

The formatValue() method accepts the actual Object and returns a String representation of that object
using the ParameterMetatype’s format. The parseObject() method accepts a String representation of
an object. If the ParameterMetatype does not have a format, it uses the ParameterType.parseObject
method to parse the value. Otherwise, it uses the given format to parse the value.

ParameterType

ParameterType is an enumeration that controls the Database Connector’s supported data types. The
Database Connector uses this enumeration to declare and verify Statementinfo parameter types and to
retrieve the correct data type from an executed statement.

The ParameterTypes that the Database Connector fully supports are:

e STRING
e LONG

e INTEGER
e SHORT

e BYTE

e DOUBLE
e FLOAT

e BOOLEAN
e DATE

o TIME

e TIMESTAMP

13

Perceptive Connect Runtime Database Connector APl Guide

The Database Connector partially supports OBJECT. Input parameters cannot have the OBJECT type, but
output parameters can. DATE, TIME, and TIMESTAMP use the Java formats to parse their respective
values. If a query uses DateTime, TIMESTAMP can be used as the corresponding ParameterType.

ParameterType provides two static methods to retrieve a ParameterType value.
e public static ParameterType fromClass(Class<?> clazz)
e public static ParameterType fromString(String name)

The fromClass() method accepts the class that corresponds with the desired ParameterType. The
FfromString() method accepts the name() method’s String or the simple class name. The
fromString() method’s argument is not case sensitive. Both methods will throw an
I11egalArgumentExeption if you call either method with an argument that does not match a
ParameterType.

DateTime Formatting

The ParameterTypes DATE, TIME, and TIMESTAMP support custom formats for input and output
formatting. There are two ways to provide an input parameter format.

e HTTP Request
e Parameter Declaration

HTTP Request. To declare a parameter’'s Date format using an HTTP request, add an additional
parameter name-format, where name is the parameter you want to format. For example, given a
StatementDescription named UpdateBirthdays with two Input Parameters, Date#NewBirthday and
String#Who, the request would be:

http://hostname:port/rs/databaseConnector/statement/UpdateBirthdays?Who=Bobé&N
ewBirthday=05-14- 2015&NewBirthday-format=MM- dd-yyyy

Parameter Declaration. To declare a parameter’s format using the StatementDescription configuration,
insert your delimiter after the parameter’'s name and add a custom format. For example: given a
StatementDescription named UpdateBirthdays with two Input Parameters,

Date#NewBi rthday#MM/dd/yyyy and String#Who, the request would be:

http://hostname:port/rs/databaseConnector/statement/UpdateBirthdays?Who=Bobé&N
ewBirthday=05-14- 2015&NewBirthday-format=MM- dd-yyyy

Note An HTTP request’s date format overwrites a parameter’s configured format.

Output Format. To declare a parameter’s output format, insert the delimiter after the output parameter’s
name and add the custom format. For example: given a Date parameter named NewBirthday, a
delimiter #, and the format MM/dd/yyyy, the parameter’s declaration would be
Date#NewBirthday#MM/dd/yyyy

All formats must follow Java’s SimpleDateFormatter patterns.

14

https://docs.oracle.com/javase/7/docs/api/java/sql/Date.html
https://docs.oracle.com/javase/7/docs/api/java/sql/Time.html
https://docs.oracle.com/javase/7/docs/api/java/sql/Timestamp.html
http://hostname:port/rs/databaseConnector/statement/UpdateBirthdays?Who=Bob&NewBirthday=05-14-%202015&NewBirthday-format=MM-%20dd-yyyy
http://hostname:port/rs/databaseConnector/statement/UpdateBirthdays?Who=Bob&NewBirthday=05-14-%202015&NewBirthday-format=MM-%20dd-yyyy
http://hostname:port/rs/databaseConnector/statement/UpdateBirthdays?Who=Bob&NewBirthday=05-14-%202015&NewBirthday-format=MM-%20dd-yyyy
http://hostname:port/rs/databaseConnector/statement/UpdateBirthdays?Who=Bob&NewBirthday=05-14-%202015&NewBirthday-format=MM-%20dd-yyyy
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Perceptive Connect Runtime Database Connector APl Guide

Parsing Strings

ParameterType provides one instance method to parse a String to an Object of the Class defined by the
given ParameterType.

public Object parseObject(String value)

If parseObject() is unable to parse the given String to the Class defined by the ParameterType, either
a NumberFormatException or Exception is thrown.

Examples

ParameterType. INTEGER.parseObject(*'123"): // returns (Integer)123
ParameterType .BOOLEAN.parseObject(‘"true'); // returns (Boolean)true
ParameterType.BOOLEAN.parseObject(*’'NotABoolean™); // throws Exception

ConcurrencyType

ConcurrencyType is an Integer enumeration that affects the behavior of a Result. The StatementExecutor
uses this enumeration when it creates new prepared Statements.

The Concurrency types are:
e CONCUR_READ_ONLY
e CONCUR_UPDATABLE
o DATABASE_DEFAULT

CONCUR_READ_ONLY and CONCUR_UPDATABLE correspond to the ResultSet's static integers with the
same names. DATABASE _DEFAULT causes the StatementExecutor to use the database's concurrency
setting.

ConcurrencyType has two static public methods.
e public static ConcurrencyType getDefault()
e public static LinkedHashMap<String, String> getOptions(Q)

The getDefault method retrieves the default CursorType used by the Database Connector. The default
value is CONCUR_READ_ONLY. The getOptions method retrieves the enumeration values as a String-
String Map, where both Strings are the names of the enumeration values. Additionally, CurrencyType has
one non-static public method.

public int getvValue()

The getValue method returns the integer value associated with the current CurrencyType instance. For
the effect of ConcurrencyTypes on a Result, see Appendix A: Result Behavior.

15

Perceptive Connect Runtime Database Connector APl Guide

CursorType

CursorType is an Integer enumeration that affects the behavior of a Result. The StatementExecutor uses
this enumeration when it creates new prepared Statements.

The CursorTypes are:

e TYPE_FORWARD_ONLY

e TYPE_SCROLL_INSENSITIVE
e TYPE_SCROLL_SENSITIVE

o DATABASE_DEFAULT

TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, and TYPE_SCROLL_SENSITIVE correspond to
the ResultSet's static integers with the same names. DATABASE_DEFAULT causes the
StatementExecutor to use the database's cursor setting.

CursorType has two static public methods.
e public static CursorType getDefault()
e public static LinkedHashMap<String, String> getOptions()

The getDefault method retrieves the default CursorType sued by the Database Connector. The default
value is TYPE_FORWARD_ONLY. The getOptions method retrieves the enumeration values as a String-
String Map, where both Strings are the names of the enumeration values. Additionally, CursorType has
one non-static public method.

public int getvalue()

The getValue method returns the integer value associated with the current CursorType instance. For
the effect of CursorType on a Result, see Appendix A: Result Behavior.

Edbc.connect.component

The edbc.connect.component package contains the Database Connector's PCR components. Your
services and components can directly bind and unbind each component in this package.

InfoFactoryManager

The InfoFactoryManager provides access to every info factory registered inside your PCR. The manager
can retrieve any service that provides either the ConnectionIinfoFactory or StatementinfoFactory interface.

To retrieve a registered info factory, you must bind the InfoFactoryManager to your component or service.
After you bind the manager, call one of the following methods to retrieve your desired factory.

e public ConnectionlnfoFactory getConnectionlnfoFactory()

e public ConnectionlnfoFactory getConnectionlnfoFactory(String name)
e public StatementlnfoFactory getStatementlnfoFactory()

e public StatementinfoFactory getStatementlnfoFactory(String name)

16

Perceptive Connect Runtime Database Connector APl Guide

The getConnectionlnfoFactory() returns the FromPifConnectioninfoFactory and the
getStatementlInfoFactory() returns the FromPifStatementinfoFactory. These two factories are the
default factories because they are in the same install bundle as the InfoFactoryManager.

The getConnectionInfoFactory(String name) returns the ConnectioninfoFactory with the given
name, and getStatementInfoFactory(String name) returns the StatementinfoFactory with the
given name. If a given name does not belong to a factory, then these two methods will return null.
Additionally, if the given name is null, then these methods will return the "from PIF" version of their
respective factories.

The manager also has four public methods for registering and unregistering info factories. You should not
call these methods. These methods are required by PCR to register and unregister the info factories.
Manually calling these methods may remove or replace a factory that another component is using. If you
want your custom factory in the manager, install a component that provides your factory as a service. The
manager automatically registers your factory.

The InfoFactoryManager is a standard PCR LifeCycleComponent. The manager does not have any
external service requirements, and it provides itself as a service. Additionally, the manager has bind and
unbind methods with 0. . n cardinality for the ConnectioninfoFactory and StatementinfoFactory interfaces.

FromPifConnectioninfoFactory

For the service functionality of this factory, see FromPifConnectioninfoFactory under the edbc.sql
package.

The FromPifConnectioninfoFactory is a PCR LifeCycleComponent that implements the
ConnectioninfoFactory interface. This component does not have any external service requirements, and it
provides the FromPifConnectioninfoFactory and the ConnectioninfoFactory services.

FromPifStatementinfoFactory

For the service functionality of this factory, see FromPifStatementinfoFactory under the edbc.sql
package.

The FromPifStatementinfoFactory is a PCR LifeCycleComponent that implements the
StatementinfoFactory interface. This component requires the FromPifConnectioninfoFactory as an
external service. This component provides the FromPifStatementinfoFactory and StatementinfoFactory
services.

Perceptive Connect Runtime Database Connector APl Guide

Appendix A: Result Behavior

The combination of a Result's ConcurrencyType and CursorType determine the behavior of the Result's
underlying ResultSet. This appendix details the behavior for each combination. These section labels
follow a "CursorType-ConcurrencyType" pattern.

TYPE_FORWARD_ONLY-CONCUR_READ_ONLY

In a TYPE_FORWARD_ONLY-CONCUR_READ_ONLY Result, you can make one forward pass through the
ResultSet, and you cannot use the cursor to update data. The Result's getResultList and
getSqglResultSet methods use the same underlying ResultSet, so these methods interfere with each
other. After you completely iterate through the underlying ResultSet, neither method will return any useful
data. The getResultList method completely iterates through a ResultSet. After this first call,
getResultList will return an empty List and getSqlResultSet will return an iterated ResultSet. Also,
if you manually iterate through a ResultSet from a fresh Result's getSglResultSet, then
getResultList will return an empty list.

TYPE_FORWARD_ONLY-CONCUR_UPDATABLE

The TYPE_FORWARD_ONLY-CONCUR_UPDATABLE combination behaves like the TYPE_FORWARD_ONLY -
CONCUR_READ_ONLY combination. The only difference between the two combinations is that
TYPE_FORWARD ONLY-CONCUR_UPDATABLE uses a cursor that can update the database.

TYPE_SCROLL_INSENSITIVE-CONCUR_READ_ONLY

The TYPE_SCROLL_INSENSITIVE-CONCUR_READ_ONLY combination removes the limitations that
TYPE_FORWARD_ONLY imposes on a Result's method. With a TYPE_SCROLL__INSENSITIVE cursor,
getResultList and getSqlResultSet reset the underlying ResultSet's cursor before execution. So
getResultList will always return the same Map List, and getSqlResultSet will always return a
ResultSet with a fresh cursor. The TYPE_SCROLL_INSENSITIVE cursor has two limitations. This cursor
uses a database snapshot and it cannot update any rows. Because of the database snapshot, any stored
Results using this cursor become stale over time.

TYPE_SCROLL_SENSITIVE-CONCUR_READ_ONLY

The TYPE_SCROLL_SENSITIVE-CONCUR_READ_ONLY combination behaves like a
TYPE_SCROLL_INSENSITIVE-CONCUR_READ ONLY that does not use a database snapshot. The
TYPE_SCROLL_SENSITIVE cursor can see any changes to existing rows in its ResultSet. This visibility
allows the ResultSet to see row updates, and row deletions appear as missing data. However, inserted
rows are not visible. Additionally, this cursor cannot update the database.

TYPE_SCROLL_SENSITIVE-CONCUR_UPDATABLE

The TYPE_SCROLL_SENSITIVE-CONCUR_UPDATABLE behaves like a TYPE_SCROLL_SENSITIVE-
CONCUR_READ_ONLY that can update a database. This similarity includes the database-visibility behavior.
Updates to current rows are visible, deletes appear as missing data, and inserts are not visible.
Compared to the other combinations, this combination provides the most flexibility.

Perceptive Connect Runtime Database Connector APl Guide

DATABASE DEFAULT-DATABASE DEFAULT
The DATABASE DEFAULT-DATABASE DEFAULT combination uses the database's default cursor and
concurrency types. If you do not know your database's default and you need a specific behavior, explicitly
use one of the other supported combinations.
Unsupported Combinations
The ResultSet's limitations prevent us from using the following combinations.
e TYPE_SCROLL_INSENSITIVE-CONCUR_READ_ONLY
o DATABASE_DEFAULT-CONCUR_READ_ONLY
o DATABASE_DEFAULT-CONCUR_UPDATABLE
e TYPE_FORWARD_ONLY-DATABASE_DEFAULT
e TYPE_SCROLL_INSENSITIVE-DATABASE DEFAULT
e TYPE_SCROLL_SENSITIVE-DATABASE_DEFAULT

Perceptive Connect Runtime Database Connector APl Guide

Appendix B: JPA Integration

The Database Connector's DataSources support JPA and its persistence units. When you configure a
Connection in the Database Connector, the Connector registers a DataSource as a service in OSGi. PCR
comes with EclipseLink/Gemini installed, and this appendix provides information for their specific
integration. The information contained in this appendix may also help you integrate with other JPA
providers.

There are four options for using the Database Connector's configured DataSources.

Notes

¢ In the following examples, MyConnectionName refers to the name configured for your connection in
the configuration GUI.

e DataSources registered by the Database Connector do not support the Java Transaction API (JTA)

e Options one through three require a JNDI provider. Refer to JNDI Provider for more information.

Option 1: Non-JTA DataSource in Persistence Unit
Define a non-jta-data-source in your persistence unit XML file.

Note This option requires a JNDI provider installed in your PCR instance. Refer to JNDI Provider for more
information.

Add non-jta-data-source to your persistence unit XML file.

<persistence-unit name="‘MyDatabase' transaction-type="RESOURCE_LOCAL">

<non-jta-data-source>

osgi :service/javaax.sql .DataSource/

(osgi . jndi.service.name=MyConnectionName)
</non-jta-data-source>

</persistence-unit>

When configured using a JNDI name, Gemini JPA does not correctly recognize non-jta-data-source
and does not generate and register an EntityFactoryManager . Instead, Gemini attempts to configure
a new DataSource and pass that to EclipseLink. To fix this, bind or otherwise obtain the Gemini-
generated EntityManagerFactoryBui lder and create an EntityManagerFactory, passing the
gemini . jpa.providerConnectedDataSource property.

Perceptive Connect Runtime Database Connector APl Guide

Option 2: Non-JTA DataSource in Code

Define the Javax.persistence.nonJtaDataSource property without modifying your persistence unit
XML file.

Note This option requires a JNDI provider installed in your PCR instance. Refer to JDNI provider for more
information.

public void bind(EntityManagerFactoryBuilder builder)

{

Map<String, Object> props = new HashMap<String, Object>();
props.put(*'javax.persistence.nonJtaDataSource",
"osgi :service/javax.sql .DataSource/

(osgi . jndi.service.name=MyConnectionName)'™);
props.put('Gemini . jpa.providerConnectedDataSource"™, true);
EntityManagerFactory factory = builder.createEntityManagerFactory(props);
... // Do something with the factory

Option 3: Directly Obtain the DataSource from JNDI

Obtain a DataSource from JNDI and set the javax.persistence.nonJtaDataSource property to
that DataSource.

Note This option requires a JNDI provider installed in your PCR instance. Refer to JNDI Provider for more
information.

public void bind(EntityManagerFactoryBuilder builder) throws NamingException

{

Map<String, Object> props = new HashMap<String, Object>();
Javax.naming.Context context = new InitialContext();
DataSource dataSource = (DataSource)
context. lookup(*'osgi:service/javax.sql .DataSource/
(osgi . jndi.service.name=MyConnectionName)");
props.put(*java.persistence.nonJtaDataSource', dataSource);
EntityManagerFactory factory = builder.createEntityManagerFactory(props);

-.. // Do something with the factory

21

Option 4: Bind to DataSource

Using DeclarativeServices, bind to the configured DataSource. This option lets you use the
ConfigurationAdmin to set the target filter for the bound DataSource.

Note This option does not require a JNDI provider.
In your DeclarativeServices (DS) XML file, enter the following information.

<scr:component xmlns:scr=http://www.osgi.org/xmlns/scr/v1.1.0
activate="activate"
deactivate="'deactivate"
name=""MyComponent''>
<reference bind="bind"
cardinality="1_.1"
interface=""org.osgi.service. jpa.EntityManagerFactoryBuilder"
name=""EntityManagerFactoryBuilder™ policy="dynamic"
target=""(osgi -unit.name=MyDatabasee)'/>
<reference bind="bind"
cardinality="1_.1"
interface="javex.sql .DataSource"
name=""DataSource"
policy=""dynamic"
target=""(osgi . jndi.service.name=MyConnectionName)'/>

</scr:component>

In your component implementation, enter the following information.
DataSource dataSource = null;

public void bind(DataSource dataSource)

{
this.dataSource = dataSource;
}
public void bind(EntityManagerFactoryBuilder builder)
{

Map<String, Object> props = new HashMap<String, Object>();
props.put(*javax.persistence.nonJtaDataSource', dataSource);
EntityManagerFactory factory = builder.createEntityManagerFactory(props);
-.. // Do something with the factory

JNDI Providers

Apache Aries is the recommended JNDI provider. You can download the required jars from the Apache
Aries website.

Apache Aries provides a number of services, but only a few are required to enable JNDI in PCR.
e Apache Aries JNDI Bundle (org.apache.aries.jndi)

e Apache Aries Proxy Bundle (org.apache.aries.proxy)

e Apache Aries Util (org.apache.aries.util)

Download the latest version of each and install them in PCR like any other bundle.

Troubleshooting
In some cases, you may encounter an error like the following example.

jJava.lang.lllegalArgumentException: Object:
com.yourcompany.YourClass@268f34f6 is not a known entity type.

First, check that your persistence unit is aware of your model. Make sure that your class is listed. We
recommend that you also set exclude-unlisted-classes to true

<persistence-unit name="‘MyDatabase' transaction-type="RESOURCE_LOCAL">
<class>com.yourcompany.YourClass</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>

</persitence-unit>

If you have correctly configured your persistence unit, it is possible that a ClassLoader issue is to blame.
This can be resolved by setting the eclipselink.classloader property when creating an
EntityManagerFactory from your EntityManagerFactoryBuilder

public void bind(EntityManagerFactoryBuilder builder)

{
Map<String, Object> props = new HashMap<String, Object>();
b;éps.put("eclipselink.classloader", this.getClass() .getClassLoader());
EntityManagerFactory factory = builder.createEntityManagerFactory(props);
... // Do something with the factory

http://aries.apache.org/

	Table of Contents
	Perceptive Connect Runtime Database Connector API
	Edbc.sql package
	Info Classes
	ConnectionInfo
	StatementInfo
	DriverInfo
	HostInfo
	UserInfo

	Info Factories
	ConnectionInfoFactory
	ConnectionInfoFactory Implementations
	FromPifConnectionInfoFactory
	InjectionConnectionInfoFactory

	StatementInfoFactory
	StatementInfoFactory Implementations
	FromPifStatementInfoFactory
	InjectionStatementInfoFactory

	StatementExecutor and Result
	StatementExecutor
	Result

	Edbc.connect.service
	ConnectionService
	DataSourceConnectionService
	ParameterMetatype
	ParameterType
	DateTime Formatting
	Parsing Strings
	ConcurrencyType
	CursorType

	Edbc.connect.component
	InfoFactoryManager
	FromPifConnectionInfoFactory
	FromPifStatementInfoFactory

	Appendix A: Result Behavior
	TYPE_FORWARD_ONLY-CONCUR_READ_ONLY
	TYPE_FORWARD_ONLY-CONCUR_UPDATABLE
	TYPE_SCROLL_INSENSITIVE-CONCUR_READ_ONLY
	TYPE_SCROLL_SENSITIVE-CONCUR_READ_ONLY
	TYPE_SCROLL_SENSITIVE-CONCUR_UPDATABLE
	DATABASE_DEFAULT-DATABASE_DEFAULT
	Unsupported Combinations

	Appendix B: JPA Integration
	Option 1: Non-JTA DataSource in Persistence Unit
	Option 2: Non-JTA DataSource in Code
	Option 3: Directly Obtain the DataSource from JNDI
	Option 4: Bind to DataSource
	JNDI Providers
	Troubleshooting

