
Perceptive Connect Runtime
Developer's Guide
Version: 1.3.x
Date: August 2016

© 2016 Lexmark. All rights reserved.

Lexmark is a trademark of Lexmark International, Inc., registered in the U.S. and/or other countries. All
other trademarks are the property of their respective owners. No part of this publication may be reproduced,
stored, or transmitted in any form without the prior written permission of Lexmark.

Perceptive Connect Runtime Developer's Guide

3

Table of Contents
About the Perceptive Connect Developer's Guide .. 5

Prerequisites .. 5

Terminology ... 5
Set up the development environment ... 5

Import the standard preferences ... 6

Install the plugins ... 6
Maven Integration for Eclipse .. 6

Setting Proxy for Maven in Eclipse .. 6

Plug-in Development Environment .. 7
Tycho Configurator .. 7

Add the archetypes .. 8

Build a connector .. 8

Create a new project ... 8
Create a new root project based on an archetype ... 9
Create a new module under the root project ... 9

Update the target ... 10

Modify a project ... 10
Add a dependency ... 10

Add a referenced service ... 11

Add a provided service .. 12

Build a Trust Validator ... 13
Enable automatic connector for upgrade handling .. 15

Configure and run the project in Eclipse ... 16
Run and debug in Eclipse .. 16

Modify the run configuration .. 16

Log and database file used in the default launch config.. 16

Configure logging .. 17
Configure logging in Perceptive Connect .. 17

About the Perceptive Connect log files .. 17

About the logging states .. 17

Deploy a connector to Perceptive Connect Runtime .. 18
Build the connector bundles for deployment ... 18

Install the Connector .. 18

Perceptive Connect Runtime Developer's Guide

4

Verify the connector installation ... 18

Debugging the connector ... 19

Connector Development Tips .. 19

Readers and Writers .. 19
Adding Validation Filters to existing web services ... 19

Existing REST Services ... 20

Existing SOAP Services... 20

About file descriptions ... 21

About archetypes .. 21

General configuration .. 21

Archetype descriptions .. 21
Frequently Asked Questions ... 24

Perceptive Connect Runtime Developer's Guide

5

About the Perceptive Connect Developer's Guide
This guide gives you the steps necessary to create a connector for the Perceptive Connect Runtime
service. For more information about the runtime service, refer to the Perceptive Connect Runtime
Installation and Setup Guide.

Prerequisites
Refer to the following list of prerequisites.

• Latest version of Perceptive Connect Runtime

• Java 8

• Eclipse

Note This was most recently tested with Eclipse Luna SR1, Eclipse IDE for Java Developers.

• Maven, version 3.0.5

Terminology
Perceptive Connect Runtime runs on the OSGi framework. OSGi is a specification for creating modular
Java applications. For an in-depth introduction to OSGi, we recommend the OSGi in Action: Creating
Modular Applications in Java by Richard Hall. Below are some OSGi terms used throughout this document.

Bundle. An OSGi module. A bundle is a standard jar file whose manifest file contains additional metadata
used by the OSGi runtime.

Bundle fragment. A bundle fragment is a bundle that shares its classloader with a host bundle. Thus, a
fragment has access to any packages in the host, and vice-versa. A fragment also has the same lifecycle
as its host. A consequence of this is that bundle activators, component descriptors, and other lifecycle
"metadata" cannot exist within a fragment.

Component. An object whose lifecycle is managed by the OSGi runtime. A bundle may contain multiple
components that may provide and consume multiple services. Each component is described by a
component descriptor XML files that is included in a bundle.

Plug-in. Within the Eclipse Plug-in Development Environment (PDE), bundles are referred as plugins. This
is because Eclipse itself runs on OSGi, and thus Eclipse plug-ins are also OSGi bundles.

Service. A service is any object that implements an interface that is registered with the Service Registry.
Objects can obtain references to a service through the Service Registry. Perceptive Connect uses the
Declarative Services component framework to manage service registration.

Set up the development environment
To set up your development environment, complete the following tasks.

• Optional. Import the standard preferences

• Install the plugins

• Add the archetypes

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
http://download.eclipse.org/eclipse/downloads/drops4/R-4.5-201506032000/
http://maven.apache.org/download.cgi
https://www.osgi.org/

Perceptive Connect Runtime Developer's Guide

6

Import the standard preferences
To import the optional Perceptive Connect standard preferences, complete the following steps.

1. Get the preference file by cloning the following git repo: http://pswgithub.rds.lexmark.com/integrated-
products/ipa.git.

2. Click File > Import > General > Preferences, and then click Next.

3. In the From preference file field, browse to the preference file located in the directory cloned from the
git repo.

4. Select Import All and click Finish.

Install the plugins
To install the required plugins, complete the following steps.

Maven Integration for Eclipse
To install Maven Integration for Eclipse (m2e), complete the following steps.

Note m2e may already be installed, depending on your version of Eclipse.

1. Open Eclipse and click Help > Install New Software.

2. Set Work with to http://download.eclipse.org/technology/m2e/releases/and press Enter.

3. Select Maven Integration for Eclipse and click Next.

4. Finish the installation.

Setting Proxy for Maven in Eclipse
This is required for development on Lexmark's local network.

Add the following proxy configuration to the settings.xml file located in %USERPROFILE%/.m2.
<proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>ps-auto.proxy.lexmark.com</host>
 <port>80</port>
 <nonProxyHosts>*.pvi.com</nonProxyHosts>
 </proxy>
</proxies>

If the file does not exist, create it with the following content.
<?xml version="1.0" encoding="utf-8"?>
<settings
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd"
 xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>

http://pswgithub.rds.lexmark.com/integrated-products/ipa.git
http://pswgithub.rds.lexmark.com/integrated-products/ipa.git

Perceptive Connect Runtime Developer's Guide

7

 <host>ps-auto.proxy.lexmark.com</host>
 <port>80</port>
 <nonProxyHosts>*.pvi.com</nonProxyHosts>
 </proxy>
 </proxies>
</settings>

Configure Eclipse with the location of the settings.xml file.

1. Open Eclipse and click Window > Preferences > User Settings.

2. Expand Maven and under User Settings, provide a path for the maven settings file.

For more information, refer to the following websites.

• Maven Eclipse Plugin

• M2Eclipse

• M2Eclipse Downloads

Plug-in Development Environment
To install the Plug-in Development Environment (PDE), complete the following steps.

Note PDE may already be installed, depending on your version of Eclipse.

1. Open Eclipse and click Help > Install New Software.

2. Set Work with to the updated URL that corresponds to your version of Eclipse, such as
http://download.eclipse.org/releases/luna or http://download.eclipse.org/releases/kepler.

3. In the filter field, type plug-in development environment and press Enter.

4. Under General Purpose Tools, select Eclipse Plug-in Development Environment and click Next.

5. Finish the installation.

For more information, refer to the Eclipse PDE website.

Tycho Configurator
To install the Tycho Configurator, complete the following steps.

1. Click Window > Preferences.

2. From the list on the left, select Maven.

3. Select Discovery and click Open Catalog.

4. In the Find field, type tycho

5. Select TychoConfigurator and click Finish.

Note If tycho is not listed, use the manual procedure below.

https://maven.apache.org/plugins/maven-eclipse-plugin/usage.html
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/m2e-downloads.html
http://download.eclipse.org/releases/luna
http://download.eclipse.org/releases/kepler
http://www.eclipse.org/pde/

Perceptive Connect Runtime Developer's Guide

8

To install the Tycho Configurator manually, complete the following steps.

1. Open Eclipse and click Help > Install New Software.

2. To set Work with, see https://repo1.maven.org/maven2/.m2e/connectors/m2eclipse-
tycho/0.9.0/N/LATEST/

3. Under m2e extensions, select Tycho Project Configurations and click Next.

4. Finish the installation.

Add the archetypes
To add the archetypes, complete the following steps.

1. Click Window > Preferences.

2. From the list on the left, select Maven.

3. Select Archetypes.

4. Click Add Remote Catalog.

5. To set the Catalog File field, see http://repo.pcr.psft.co/nexus/content/repositories/releases/

6. Set the Description to a relevant name, such as Connect Archetypes.

7. Click OK.

Build a connector
This section contains information about creating, modifying, and deploying a new connector project with the
following tasks.

• Create a new project

• Modify a project

• Configure and run the project in Eclipse

• Configure logging

• Deploy a connector to Perceptive Connect Runtime

Create a new project
Archetypes provide an easy way to get started with development in Perceptive Connect and provide basic
implementation of several common use cases. The project layout convention is a main project that contains
the launch file and target files. Under the main project, you have the supporting projects.
/some-project-main
 some-project-main.launch
 connect.target
 pom.xml
 /some-project-api

 /some-project-impl

 /some-project-impl-test

https://repo1.maven.org/maven2/.m2e/connectors/m2eclipse-tycho/0.9.0/N/LATEST/
https://repo1.maven.org/maven2/.m2e/connectors/m2eclipse-tycho/0.9.0/N/LATEST/
http://repo.pcr.psft.co/nexus/content/repositories/releases/

Perceptive Connect Runtime Developer's Guide

9

Create a new root project based on an archetype
To create a new root project based on an archetype, complete the following steps.

1. In Eclipse, click File > New > Other.

2. Select Maven > Maven Project and click Next.

3. Keep the default settings. Verify that the Create a simple project check box is cleared and click Next.

4. Set the Catalog to the name of the archetype catalog you created earlier, such as Connect
Archetypes.

5. Verify that the Show the last version of Archetype only check box is selected.

Note Archetype Artifact IDs were changed before the 1.0 release of Perceptive Connect, so 0.11.0
artifacts still appear in the list but can be ignored.

6. Select the archetype with a Group Id of com.perceptivesoftware.connect.archetype and Artifact ID
of pom-root.

7. Click Next.

8. Enter a Group Id. We recommend using reverse domain notation, for example
com.mycompany.myproduct.

9. Enter an Artifact Id. This will become the name of the project. We recommend using a format of
<connector-name>-main.

10. Click Finish.

Note Your new project may show Eclipse errors until you update the eclipse target.

Create a new module under the root project
To create a new module under the root project, complete the following steps.

1. Click File > New > Other.

2. Select Maven > Maven Module and click Next.

3. Enter a project name in the Module Name field.

4. For the Parent Project field, click Browse and select the root project that you previously created.

5. Click Next.

6. Set the Catalog to the name of the archetype catalog you created earlier, such as, Connect
Archetypes.

7. Select the base archetype with which you would like to begin. More information on the archetypes can
be found in the About archetypes section.

8. Fill out any required fields and click Finish. See the About archetypes section for information on
required fields.

Note The Finish button may not activate until you click off any required fields in the Eclipse dialog box.

Perceptive Connect Runtime Developer's Guide

10

Update the target
The eclipse Target Platform determines which plug-ins your connector will be built and run against.
The archetype's Target Platform matches the components available in the Perceptive Connect
Runtime.

To update the project target, complete the following steps.

1. In the root project, right-click the TARGET file and select Open With > Target Editor.

2. In the top right corner of the screen, click Set as Target Platform. The operation may take a few
minutes to complete.

3. Setup is complete. Close the target file.

Modify a project
This section describes how to modify a project by adding a dependence, a referenced service, or a provided
service.

Add a dependency
To modify a project by adding a dependency, complete the following steps.

1. In the Package Explorer, open the MANIFEST.MF file.

2. At the bottom of the screen, click the Dependencies tab.

3. In the Imported Packages section, click Add.

4. Select the required package and click OK.

Note The Required Plug-ins option should be avoided except in integration test projects. See the Use
Import-Package instead of Require-Bundle topic in the OSGi wiki for more information.

If the package you need is not available in the list, you can add a bundle that exports the package using the
following steps.

1. Download the required bundle.

2. Right-click your TARGET file and click Open With > Target Editor.

3. In the Locations section, on the Definitions tab, click Add.

4. Select Directory and click Next.

5. Browse to the location of the bundle and click Finish.

6. Open the Content tab.

7. In the Content section, search the list for the required bundle, such as org.apache.commons.codec
and verify that the check box is selected.

8. Save and close the target file.

http://wiki.osgi.org/wiki/Use_Import-Package_instead_of_Require-Bundle
http://wiki.osgi.org/wiki/Use_Import-Package_instead_of_Require-Bundle

Perceptive Connect Runtime Developer's Guide

11

Add a referenced service
To modify a project by adding a referenced service, complete the following steps.

1. In the Package Explorer, right-click the XML file located in the OSGI-INF folder.

2. Click Open With > Component Definition Editor.

3. Click the Services tab located in the bottom left corner of the window.

4. Under References Services, click Add.

5. Find the service type you want to add and click OK.

6. Select the new service and click Edit.

7. Set the Cardinality.

• 0..1 – An optional singular service.

• 1..1 – A required singular service.

• 0..n – An optional multiple service

• 1..n – A required multiple service

8. Set the Policy.

• static. The component is deactivated and a new instance is created whenever the service is
switched.

• dynamic. The component instance remains the same whenever the service is switched.

Note The dynamic policy provides better performance and should be preferred. The static policy is
the default policy.

9. Add values to the Bind and Unbind fields.

Note These values serve as the method names that receive service references. See the Code Samples
below.

10. Click OK.

11. Click the Overview tab located in the bottom left corner of the window.

12. Click the Class*: hyperlink under Component.

13. Add a reference and bind and unbind methods for the new service, where the method names are equal
to the values you previously provided for Bind and Unbind. See the Code Samples below.

14. Save the file.

Perceptive Connect Runtime Developer's Guide

12

Code Samples
• A singular service reference.

• Assume that Bind was set to bind, and Unbind was set to unbind in the previous procedure.
 private ActionManager manager;

 public void bind(ActionManager newManager) {
 manager = newManager;
 }

 public void unbind(ActionManager oldManager) {
 manager = null;
 }

• A multiple service reference.

• Assume that Bind was set to addAction, and Unbind was set to removeAction in the previous
procedure.
 private final List<Action> actions = new ArrayList<>();

 public void addAction(Action action) {
 actions.add(action);
 }

 public void removeAction(Action action) {
 actions.remove(action);
 }

Add a provided service
To add a provided service, complete the following steps.

1. In the Package Explorer, in the OSGI-INF folder, right-click the XML file.

2. Click Open With > Component Definition Editor.

3. Click the Services tab located in the bottom left corner of the window.

4. Under Provided Services, click Add.

5. Find the service type you want to add and click OK.

Note The implementation class for this component must provide the interface, or implement the class
that you select in the list. It is a best practice to provide interfaces for services.

6. Save the file.

Perceptive Connect Runtime Developer's Guide

13

Build a Trust Validator
A Trust Validator can be used to ensure that only authenticated users can access sensitive information
through REST/SOAP endpoints. In this way, consumers of these endpoints are forced to provide specific
headers for authentication when they make their request. The RESTTrustValidator and
SoapTrustValidator interfaces are used to enforce authentication on REST and SOAP endpoints
respectively. An implementer of either interface must then publish these interfaces as provided services
through their component definitions.

The RESTTrustValidator interface contains the following methods.

• Ojbect getToken(ContainerRequestContext context) throws TrustRequiredException.
This method is responsible for pulling out and returning the appropriate token from the
ContainerRequestContext.

• void validateToken(Object token)throws InvalidTrustTokenException. This method is
responsible for actually validating the token. When the token is valid, there is "trust." When the token is
invalid, an exception should be thrown.

• Duration getTimeout() This method is responsible for setting the interval in which a token is
considered valid after a successful call to validateToken.

The SOAPTrustValidator interface contains the following methods.

• Object getToken(SOAPMessageContext context) throws TrustRequiredException. This
method is responsible for pulling out and returning the appropriate token from the
SOAPMessageContext.

• void validateToken(Object token) throws InvalidTrustTokenException This method is
responsible for actually validating the token. When the token is valid, there is "trust." When the token is
invalid, an exception should be thrown.

• Duration getTimeout() This method is responsible for setting the interval in which a token is
considered valid after a successful call to validateToken.

To create a Trust Validator service, complete the following steps.

1. Depending on whether your validator will provide SOAP, REST, or both types of web services, your
validator class should implement SOAPTrustValidator, RESTTrustValidator, or both.
public class SampleTrustValidator implements RESTTrustValidator, SOAPTrustValidator
{
 public static final String TRUST_HEADER_NAME = "X-Fake-Trust-Header";
 public static final String TRUST_HEADER_VALID = "gooduser";

 @Override
 public Object getToken(SOAPMessageContext context) throws TrustRequiredException
{
 Map<String, List<String>> headers = (Map<String, List<String>>)
context.get(MessageContext.HTTP_REQUEST_HEADERS);
 List<String> trustHeaders = headers.get(TRUST_HEADER_NAME);

 if (trustHeaders == null || trustHeaders.size() != 1) {
 throw new TrustRequiredException(String.format("Failed to find '%s'
header in message.", TRUST_HEADER_NAME));
 }

Perceptive Connect Runtime Developer's Guide

14

 return trustHeaders.get(0);
 }

 @Override
 public Object getToken(ContainerRequestContext context) throws
TrustRequiredException {
 String headerValue = context.getHeaderString(TRUST_HEADER_NAME);
 if (headerValue == null) {
 throw new TrustRequiredException(String.format("Failed to find the '%s'
header in message.", TRUST_HEADER_NAME));
 }

 return headerValue;
 }

 @Override
 public void validateToken(Object token) throws InvalidTrustTokenException {
 if (!token.toString()
 .equals(TRUST_HEADER_VALID)) {
 throw new InvalidTrustTokenException(String.format("The '%s' token was
not valid.", TRUST_HEADER_NAME));
 }
 }

 @Override
 public Duration getTimeout() {
 return new Duration(1, TimeUnit.MINUTES);
 }

}

2. Create a Service Component File for the validator you implemented. Set SOAPTrustValidator,
RESTTrustValidator, or both as provided services.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="Sample Trust
Validator">
 <implementation
class="com.perceptivesoftware.pif.common.trust.SampleTrustValidator"/>
 <service>
 <provide
interface="com.perceptivesoftware.pif.common.trust.RESTTrustValidator"/>
 <provide
interface="com.perceptivesoftware.pif.common.trust.SOAPTrustValidator"/>
 </service>
</scr:component>

Perceptive Connect Runtime Developer's Guide

15

To use a validator on new SOAP and REST endpoints, complete the following steps.

1. Build your web service using the pif-jaxrs-endpoint-archetype, pif-jaxws-endpoint-archetype.

2. In the component definition for the RESTComponent/SOAPComponent class, list
RESTValidationFilter or SOAPValidationFilter as referenced services and specify the bind and
unbind fields to these services a bind and unbind, respectively. These services become available
when the validator services component you just created is running.

3. To depend on a specific validation service, add the following information to the target field:

(validatorName=<fully qualified name>) where <fully qualified name> is the fully qualified name of the
validator service.

Example
com.perceptivesoftware.pif.common.trust.SampleTrustValidator.

To update REST/SOAP endpoints on an existing connector, refer to Adding Validation Filters to existing
web services.

Enable automatic connector for upgrade handling
Perceptive Connect Runtime provides the nstallService interface that represents an "upgrade hook"
that may be implemented to receive messages about bundle updates. The implemented service receives an
instance of UpdateInfo when a new version of the containing bundle is installed in Perceptive Connect
Runtime. UpdateInfo contains the original bundle version, the new bundle version, and the time the
bundle was upgraded. A connector may find it useful to provide an InstallService implementation so
that post-upgrade processes may be performed, such as upgrading channel mappings, updating database
records, and so on.

To provide an implementation of InstallService, complete the following steps.

1. Create a class that extends InstallService.

2. Override the updated (updateInfo info) method.

3. Implement any upgrade logic that you want to perform.

4. Create a Component Definition that lists your class as providing the interface for the
InstallService.
public class InstallServiceImpl extends InstallService {
 @Override
 public void updated(UpdateInfo info) {
 //implement upgrade logic
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="PIF Sample
Connector Update Service">
 <implementation class="com.acme.connector.InstallServiceImpl"/>
 <service>
 <provide interface="com.perceptivesoftware.pif.common.bundle.InstallService"/>
 </service>
</scr:component>

Perceptive Connect Runtime Developer's Guide

16

Configure and run the project in Eclipse

Run and debug in Eclipse
To run or debug the project in Eclipse, complete one of the following steps.

• To run your connector from Eclipse, right-click the LAUNCH file and click Run As > [project name].
This starts an OSGi runtime in which all of the required Perceptive Connect bundles are installed, as
well as your connector bundles.

• To debug your connector from Eclipse, right-click the LAUNCH file and click Debug As > [project
name].

Modify the run configuration
To modify the run configuration, complete the following steps.

1. In the Package Explorer, right-click the LAUNCH file.

2. Click Run As > Run Configurations.

3. Modify the run configuration with the options on the following tabs.

• Bundles allows you to include and exclude bundles from the OSGi container deployed by eclipse.

• Arguments allows you to modify VM arguments. The working directory for Eclipse and the
listening port can be set in here.

Note You can change the default tcp port that the web console listens on by modifying -
Dorg.osgi.service.http.port=.

• Settings is where the JRE is set. Under the Configuration Area, there is the option to Clear the
configuration area before launching. By clearing this check box, Eclipse preserves channel
mappings and any settings that are changed in the admin console.

Important You should use caution when changing the Run Configuration. It is easy to include libraries that
will not be available in the PCR Runtime Distribution, which will break your connector when it is run in the
stand-alone PCR engine.

Log and database file used in the default launch config
By default, your PIF log and database files are located in the pcr-debug directory under your Eclipse
project's Workspace. To change the location of these files, complete the following step.

• Modify your launch file's Arguments (refer to the Eclipse tab in Debug Configurations) and change
 –Dpcr.db.server.type="h2" –Dpcr.db.databasename=$-{workspace_loc}/pcr-
debug/PCRDebugDatabase as desired.

Perceptive Connect Runtime Developer's Guide

17

Configure logging
You can use log files to interpret issues encountered when running Perceptive Connect Runtime. A system
administrator or developer enables logging, sets the logging state, and specifies the log file location. The
Perceptive Connect Runtime Service must be running to enable logging.

Configure logging in Perceptive Connect
To configure logging, complete the following steps.

1. In the Perceptive Connect Web Console, on the Configuration tab, select View Configuration. In
the Name column, locate the PIF Logger row.

2. Click the Edit button to open the PIF Logger Configuration menu.

3. Input the values for the following logging parameters.

1. Log Level. The level of detail output when exceptions occur (pif.log.level). For more information,
refer to Logging states.

2. Log Directory. The path location of the PIF log file (pif.log.directory).

3. Logger Name. The name of the logger in the system being configured (pif.log.name).

4. Click Save.

About the Perceptive Connect log files
Log files are located in [drive:]/{install path}/PIF/logs/ folder.

• pifservice-stderr.[date].log logs errors.

• pifservice-stdout.[date].log logs the standard output.

• pif.all.log combines entries from the pifservice-stderr and pifservice-stdout log files.

• commons-daemon.[date].log logs the Perceptive Connect Runtime launch process.

About the logging states
You want to set minimal logging, Level 0, to capture only critical exceptions, unless you are debugging an
issue. A verbose state, such as Level 4, can generate large log files that affect system performance and
hard disk space.

• Error (Level 0). This state records runtime errors or unexpected conditions about the current operation,
such as

• Assertion failures

• Network connection problems

• Issues with retrieving valid authentication tokens

• Warning (Level 1). This state records events forewarning potential problems, such as

• A non-secure data access connection

• A data access implementation failure

• Performance issues

Perceptive Connect Runtime Developer's Guide

18

• Info (Level 2). This state writes data to the log file as part of the normal operational flow of the service,
such as

• Startup and shutdown

• Normal timers

• Workflow events

• Debug (Level 3). This state reveals diagnostic details often useful for debugging.

• Trace/All (Level 4). This state writes all log messages to the log file. Typically, this includes even more
verbose details for debugging.

Deploy a connector to Perceptive Connect Runtime
By default, Eclipse continuously compiles your project and allows you to run your connector within an
eclipse debug session. However, to fully compile your connector for deployment to a stand-alone
Perceptive Connect Runtime, you must execute a maven build.

To build your connector through Eclipse's m2e maven plugin, complete the following steps.

1. Right-click your root maven project and select Maven > Update Project.

2. Right-click your root maven project and select Run As > Maven Install.

To build your connector through Stand-alone Maven, complete the following steps.

1. Ensure that your M2_HOME and JAVE_HOME environmental variables are correct.

2. In a cygwin, dos, or unix shell, navigate to your root project's directory.

3. Execute mvn clean install.

Build the connector bundles for deployment

Install the Connector
To install a connector, complete the following steps.

1. In the Perceptive Connect Runtime Dashboard, click Install a Connector.

2. On the Bundle Management page, there is a column on the left side of the page that says DRAG
FILES HERE. Drag your project JAR, ZIP and PCR files.

3. Perceptive Connect displays the installation results on the right side of the page.

Verify the connector installation
To verify connector installed correctly, complete the following steps.

1. In Perceptive Connect Runtime Web Console, click Perceptive Connect > View Bundles.

2. On the Perceptive Connect Runtime Web Console Bundles, there is a list of installed bundles.
Verify that the connector bundles you installed are in the Active state. If they are not, click the bundle's
Start button in the Action column.

Perceptive Connect Runtime Developer's Guide

19

Debugging the connector
To debug a connector that is deployed to a running instance of Perceptive Connect Runtime, perform the
following steps.

1. Run the PerceptiveConnectRuntimew.exe file.

2. Click the Java tab.

3. Insert the following information in the Java Options input.

• -agentlib:jdwp=transport=dt_socket,sever=y,suspend=n, address=6006.

Note You can modify the suspend and address argument to your needs. A suspend argument of y
causes the service to wait for the debugger to attach before completing the startup process. The
address argument defines the port on which debugging is allowed.

4. Click the Apply button.

5. If the service is already running, restart the service.

To connect the Eclipse debugger to the running instance of Perceptive Connect Runtime, perform the
following steps.

1. On the Eclipse toolbar, click Run > Debug Configurations.

2. Right-click Remote Java Application and click New on the resulting context menu.

3. On the right side of the screen, name the debug configuration in the Name field.

4. In the Project box, click Browse and then select the connector project to debug.

5. In the Connection Properties field, fill in the Host and Port fields.

• In the Host field, input the IP Address of the machine on which Perceptive Connect Runtime is
running, or localhost if you are debugging on the same machine.

• In the Port field, provide the port number that you configured to allow debugging. This value is the
argument for the address parameter entered into the Java Options field of the service executable.

Connector Development Tips
This section contains tips, tricks, and best practices that connector developers have defined to support your
efforts.

Readers and Writers
ParameterSource and ParameterTarget types must be visible to JAXB to enable XML serialization
and deserialization. To be visible, the class definitions need to be public or static.

Adding Validation Filters to existing web services
As of PCR 1.2, connector developers have the ability to add validation filters to their web services. For new
connectors, archetypes have been updated accordingly. However, existing connectors can be modified to
add the following new functionality.

Perceptive Connect Runtime Developer's Guide

20

Existing REST Services
1. Your RESTComponent should extend AbstractRESTComponent rather than

AbstractLifecylceComponent. If your REST Service already extends
AbstractRESTComponent, go to the next step. If not, complete the following substeps.

1. If the REST service was created using a pre-1.3 archetype, remove the declaration of the
JAXRSService in your RESTComponent as it is already declared in the AbstractRESTComponent
class.

2. In the same class, modify the startup method by changing service.registerApplication to
registerApplication.

3. In the same class, remove the methods registerServlet and unregisterServlet. Additionally, you can
remove the shutdown method.

4. In the component definition to your RESTComponent, update the service reference to the
JAXRSService to call bind and unbind rather than registerServlet and unregisterServlet.

2. In the component definition to your RESTComponent, you must add the reference to the REST filter
service RestValidationFilter.

3. To require a specific validation service, you may add the following to the target attribute of the service
reference: (validatorName=<fully qualified service name>), where <fully qualified
service name> is the fully qualified name of the service. For example,
com.perceptivesoftware.imagenow.service.validator.ImageNowValidator.

Note Version 1.1 of Content Connector includes and ImageNow Validator service that extracts a
sessionHash cookie from a REST request and forwards the session hash on to the ImageNow
service for validation. The ImageNow Validator service can be used to require validation with
ImageNow on your REST endpoints. For more information on the ImageNow Validator service, consult
the Content Connector Install Guide.

Existing SOAP Services
1. Create a local variable validationFilter of type SOAPValidationFilter so that you can store

the filter reference. Add in additional bind() and unbind() methods so your component can reference the
validation filter if it exists.
 validationFilter = newValidationFilter;
}

public void unbind(SOAPValidationFilter oldValidationFilter) {
 validationFilter = null;
}

2. The call to registerEndpoint in the startup by adding the validationFilter as an additional argument as
shown in the following example.
public void startup() throws Exception {
 ...
 service.registerEndpoint(ALIAS, endpoint, validationFilter);
 ...
 }

3. In the component definition to your SOAPComponent, you must add the reference to the SOAP filter
service SOAPValidationFilter.

Perceptive Connect Runtime Developer's Guide

21

About file descriptions
The following section defines file descriptions used in the Runtime Connector process.

Launch files. The launch file contains the information needed for your Eclipse run and debug configuration,
including VM arguments, JRE settings, and bundles to install in the runtime service.

Target files. Refer to the Target Platform topic in the Eclipse documentation.

POM files. Refer to this Maven document for more information.

Manifest files. In OSGi, the metadata about how to run a bundle (which is a JAR with OSGi metadata)
is contained in the manifest, MANIFEST.MF.file This file is located in ./META-INF/ within a JAR, as well as
in any Eclipse PDE project.

Component descriptor files. Component descriptors are XML files located in the OSGI-INF/ directory of
an OSGI bundle. These files are used by the Declarative Services component framework. A component
descriptor contains the name of the class providing the component implementation, as well as a list of
services that the component provides and services to which that component is bound.

About archetypes
Maven Archetype is a templating tool for creating Java projects. Several Maven archetypes are provided to
ease connector development. A brief description of each archetype and its configuration parameters are
included in the following sections.

General configuration
Every Maven artifact is uniquely identified by a Group Id, Artifact Id, and Version. When creating a new
Maven project or Maven module in Eclipse, there are configured after selecting an archetype. In general,
the Group Id and Version should be consistent for all projects in a connector, should be defined in the root
project, and will be inherited by all child projects. We recommend a Group Id that follows standard Java
package naming conventions (for example, com.mydomain.myconnector).

Additionally, there is a default Package associated with the project. This can be ignored for the root project.
For modules, this is the package in which generated source code is placed. Package names should be
consistent with the Group ID (for example, com.mydomain.myconnector.endpoints). A module may
contain any number of packages. This setting is only used when generating archetype source files.

Archetype descriptions
Several Maven archetypes are provided to ease connector development.

pif-jaxrs-endpoint-archetype - Creates a simple JAX-RS web service with a single "Hello World" REST
endpoint.

Parameters

• endpoint The name of the class providing the endpoint, the URL alias of the endpoint, and the name of
the component providing the web service.

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fconcepts%2Ftarget.htm
http://maven.apache.org/guides/introduction/introduction-to-the-pom.htm
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Perceptive Connect Runtime Developer's Guide

22

pif-jaxws-endpoint-archetype - Creates a simple JAX-WS web service with a single "Hello World" SOAP
method.

Parameters

• endpoint The name of the class providing the method, the URL alias of the endpoint, and the name of
the component providing the web service.

pie-trigger-archetype - Creates a simple PIE Trigger service that has a single identifier, and a few output
parameters.

Parameters

• connector The "component.group" property in the trigger's component descriptor.

• trigger The name of the trigger including its class name, and the name of the component providing the
Trigger service.

pie-simple-connector-archetype - Creates a simple PIE Action service that has a single input and output
parameter.

Parameters

• action The name of the action including its class name, and the name of the component providing the
Action service.

• connector The "component.group" property in the trigger's component descriptor and the bundle-name
property in the manifest file.

pie-configurable-connector-archetype - The OSGi Metatype spec provides a way for services to be
configured at runtime. Currently, the Connect Runtime uses the Felix web console to provide a UI for
Metatype configuration. At the service level, the metatype is described through an XML file in OSGI-
INF/metatype/. This archetype creates a project containing a metatype definition for a configurable
action. For a brief introduction to metatypes, we suggest this article.

Parameters

• action The name of the action including its class name, and the name of the component providing the
Action service.

• connector The "component.group" property in the trigger's component descriptor and the bundle-name
property in the manifest file.

http://felix.apache.org/documentation/subprojects/apache-felix-web-console.html
http://blog.osgi.org/2011/03/metatypes.html

Perceptive Connect Runtime Developer's Guide

23

pie-connector-unittest-archetype - Creates a bundle fragment project containing unit tests for an Action
within the host project. The test class in this file is designed to test an Action, so this should be paired with
either the pie-simple-connector-archetype or pie-configurable-connector-archetype for a working
example.

Parameters

• connector The bundle-name property in the manifest file.

• action The name of the action under test.

• host_artifactId The artifact id of the bundle under test.

pie-connector-integration-test-archetype - Creates a bundle that provides basic integration test
functionality. Test fixtures and a launch file are included so the developer can focus on quickly writing tests.

Parameters

• connector-name The name of the connector that the integration test bundle will be testing. This value
will be included in the test bundle's manifest.

imagenow-connector-archetype - Creates a simple PIE Action service that does not have any input or
output parameters defined. The action also has a service reference to the ImageNowEndpoint in Content
Connector. This archetype should be used when creating a connector that requires direct communication
with ImageNow.

Parameters

• action The name of the action including its class name, and the name of the component providing the
Action service.

• connector The "component.group" property in the trigger's component descriptor and the bundle-name
property in the manifest file.

connect-assembly-archetype - Creates a maven project that inserts project module artifacts into a zip file.
By default, the only module artifacts included in the zip file are jar files. Add each module of your project as
a dependency in the pom of the assembly archetype project to include the modules' artifacts in the zip
archive. The zip archive is especially useful for connectors that are composed of multiple bundles. The
single zip archive can be distributed to customers and installed through the Connector Installer UI of
Perceptive Connect Runtime.

Perceptive Connect Runtime Developer's Guide

24

Frequently Asked Questions
This section contains the answers to questions that either have an unexpected answer or that we have
encountered commonly when working with connector developers.

I am attempting to use packages in the "pif.test_utils" bundle, and am seeing error messages such
as "Package uses conflict: Import-Package: org.apache.http.impl.auth; version="4.3.3"" at runtime.
What is going on?

Typically, the uses conflict means that there is a version incompatibility between different bundles importing
the same package. See this article for an in-depth explanation. However, we encountered this specific error
message when the "pif.cfx" bundle was not being imported into the project. The OSGI dependency resolver
sometimes returns unexpected error messages, and this was one of those instances.

I am encountering Java.lang.NoClassDefFoundError or java.lang.ClassNotFoundException
at runtime. How do I resolve these error messages?

Unfortunately, this is a fairly common issue with OSGI applications. As with any ordinary Java application,
these exceptions mean that the class could not be found or could not be instantiated by the classloader. A
goal of bundle package exports is to avoid this type of run-time error, and replace it with an unresolved
bundle, which is easier to troubleshoot. Typically, this problem is encountered with platform-dependent
classes that are provided by the Java runtime (such as sun.* or javax.* packages). By default, these
packages are blocked by the Felix classloader. The reasoning developer, this is an annoyance as the error
is only exposed at runtime through NoClassDefFoundError/ClassNotFoudnException.

 We are investigating a better way for resolving these issues, but the current solution is as follows.

1. Add the problem package as an optional import to your manifest.

1. In Eclipse, open the Manifest file, and click the Dependencies tab.

2. Under Imported Packages, click Add* and add the required package. In the example above, this
would be javax.imageio.metadata.

3. Select the newly added package, and click Properties.

4. Select the Optional check box and click OK.

5. Save the Manifest file, and you should now see something like
javax.imageio.metadata;resolution:=optional, if you view the final file in a test editor.

2. Add the package to the runtime configuration.

Note This step must be done in the installed PCR instance. In other words, anyone who installs your
connector needs to perform this step after connector installation.

1. Open the PCR Install Directory/conf/config.properties for currently installed runtime.

2. Add the new package (example.javax.imageio.metadata) to the
org.osgi.framework.system.packages.extra setting.

3. Save the file. You may also need to restart the runtime.

Troubleshooting this type of issue with system packages typically involves multiple iterations of the above
steps. The reason is that resolving one exception might expose another later in the code path.

http://spring.io/blog/2008/11/22/diagnosing-osgi-uses-conflicts/

	Perceptive Connect Runtime
Developer's Guide
	About the Perceptive Connect Developer's Guide
	Prerequisites
	Terminology

	Set up the development environment
	Import the standard preferences
	Install the plugins
	Maven Integration for Eclipse
	Setting Proxy for Maven in Eclipse

	Plug-in Development Environment
	Tycho Configurator
	Add the archetypes

	Build a connector
	Create a new project
	Create a new root project based on an archetype
	Create a new module under the root project
	Update the target

	Modify a project
	Add a dependency
	Add a referenced service
	Code Samples

	Add a provided service

	Build a Trust Validator
	Enable automatic connector for upgrade handling

	Configure and run the project in Eclipse
	Run and debug in Eclipse
	Modify the run configuration
	Log and database file used in the default launch config

	Configure logging
	Configure logging in Perceptive Connect
	About the Perceptive Connect log files
	About the logging states

	Deploy a connector to Perceptive Connect Runtime
	Build the connector bundles for deployment
	Install the Connector
	Verify the connector installation
	Debugging the connector

	Connector Development Tips
	Readers and Writers
	Adding Validation Filters to existing web services
	Existing REST Services
	Existing SOAP Services

	About file descriptions
	About archetypes
	General configuration
	Archetype descriptions

	Frequently Asked Questions

