
Perceptive Connect Runtime
Developer's Guide
Version: 1.5.x
Written by: Product Knowledge, R&D
Date: Friday, December 23, 2016

© 2014-2016 Lexmark. All rights reserved.
Lexmark is a trademark of Lexmark International Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be reproduced, stored, or
transmitted in any form without the prior written permission of Lexmark.

Perceptive Connect Runtime Developer's Guide

3

Table of Contents

Prerequisites 8

Terminology 8

Set up the development environment 9

Import the standard preferences (optional) 9

Install the plugins 9

Maven Integration for Eclipse 9

Plug-in Development Environment 10

Tycho Configurator 11

Add the archetypes 11

Build a connector 12

Create a new project 12

Create a new root project based on an archetype 12

Create a new module under the root project 13

Update the target 13

Modify a project 13

Add a dependency 13

Add a referenced service 14

Code Samples 15

Add a provided service 15

Creating REST Endpoints / Handling CORS Requests 16

Building a Trust Validator 16

Trust Validation Diagrams 16

Trust validation, step 1 17

Trust validation, step 2 18

Trust Validator Interfaces 19

Using a Trust Validator 21

Using Trust Validators with CORS and/or SSL 22

Enable automatic connector upgrade handling 22

Configure and run the project in Eclipse 23

Perceptive Connect Runtime Developer's Guide

4

Run and debug in Eclipse 23

Modify the run configuration 23

Log and database file used in the default launch config 23

Configure logging 24

Configure logging in Perceptive Connect 24

About the Perceptive Connect log files 24

About the logging states 24

Deploy the connector to Perceptive Connect Runtime 25

Build the connector bundles for deployment 25

Install the connector 25

Verify the connector installation 26

Debugging the connector 26

Core Concepts 27

Scheduler 27

Scheduler Source Based Conflict Resolution 27

Job 27

JobDetail 28

DetailedJob 28

JobTrigger 28

Schedule 28

CronSchedule 29

SimpleSchedule 29

Using the Connect Scheduler 29

Using the API 30

Scheduler Service 30

Builder classes 30

UsingOSGi Services 30

CronScheduleJobTrigger 30

AbstractDetailedJob 31

Connector Development Tips 31

Connector Names and Bundle names 31

Perceptive Connect Runtime Developer's Guide

5

Connector Name 31

Bundle Name 31

Example 32

Readers andWriters 32

Adding Validation Filters to existing web services 32

For existing REST Services: 32

For existing SOAP Services: 33

About file descriptions 33

Launch files 33

Target files 33

POM files 33

Manifest files 33

Component descriptor files 34

About archetypes 34

General configuration 34

Archetype descriptions 34

pif-jaxrs-endpoint-archetype 34

Parameters 34

pif-jaxws-endpoint-archetype 34

Parameters 34

pie-trigger-archetype 35

Parameters 35

pie-simple-connector-archetype 35

Parameters 35

pie-configurable-connector-archetype 35

Parameters 35

pie-connector-unittest-archetype 35

Parameters 36

pie-connector-integration-test-archetype 36

Parameters 36

imagenow-connector-archetype 36

Perceptive Connect Runtime Developer's Guide

6

Parameters 36

connect-assembly-archetype 36

What is CORS 37

Terms 37

Detailed Explanation 37

CORS Requests with Secure Data 37

What CORS Cannot Do 38

CORS, PCR, and Your Application(s) 38

Passing secure data from Perceptive Experience to PCR 39

Example 0 40

System layout 40

Sequence diagram 40

Example 1 41

System layout 41

Sequence diagram 41

Example 2 42

System layout 42

Sequence diagram 42

Example 3 43

System layout 43

Sequence diagram 44

Example 4 (Hypothetical) 44

System layout 44

Sequence diagram 45

CORS with Secure Cookies 45

Making CORS Requests from YourWeb Application 46

Using Pure Javascript 46

Using jQuery 46

Passing Secure Data from YourWeb Application to PCR 46

Handling CORS Requests Made to Your Connector's Endpoint 47

Perceptive Connect Runtime Developer's Guide

7

Using PCR Global CORS Settings 47

Using JAX-RS Annotations 47

Explicitly Setting CORS Headers 48

Configuring or Overriding CORS in Either Situation 49

Setting Browser Cookies from Your Endpoint 49

Appendix: CORS Configuration forWeb Servers 49

Configuring CORS in Tomcat 49

OtherWeb Servers 50

Frequently Asked Questions 50

Q. I am attempting to use packages in the "pif.test_utils" bundle, and am seeing error messages such
as "Package uses conflict: Import-Package: org.apache.http.impl.auth; version="4.3.3"" at runtime.
What is going on? 50

Q. I am encountering Java.lang.NoClassDefFoundError or java.lang.ClassNotFoundException at
runtime. How do I resolve these error messages? 51

Perceptive Connect Runtime Developer's Guide

8

Prerequisites
l Latest version of Perceptive Connect Runtime

l Java 8

l Eclipse
Note This was most recently tested with EclipseMars R, Eclipse IDE for Java Developers.

l Maven

Terminology
Perceptive Connect Runtime runs on theOSGi framework. OSGi is a specification for creatingmodular Java
applications. For an in-depth introduction to OSGi, we recommend the book OSGi in Action by Richard Hall.
Below are a someOSGi terms used throughout this document.

l Bundle. An OSGi module. A bundle is a standard jar file whosemanifest file contains additional
metadata used by the OSGi runtime.

l Service. A service is any object that implements an interface that is registered with the Service Registry.
Objects can obtain references to a service through the Service Registry. Perceptive Connect uses the
Declarative Services component framework tomanage service registration.

l Component. An object whose lifecycle is managed by the OSGi runtime. A bundlemay contain multiple
components whichmay provide and consumemultiple services. Each component is described by a
component descriptor XML file that is included in a bundle.

l Plug-in. Within the Eclipse Plug-in Development Environment (PDE), bundles are referred as plugins.
This is because Eclipse itself runs onOSGi, and thus Eclipse plug-ins are also OSGi bundles.

l Bundle fragmentA bundle fragment is a bundle that shares it's classloader with a host bundle. Thus, a
fragment has access to any packages in the host, and vice-versa. A fragment also has the same
lifecycle as it's host. A consequence of this is that bundle activators, component descriptors, and other
lifecycle "metadata" cannot exist within a fragment.

http://repo.pcr.psft.co/nexus/content/repositories/releases/com/perceptivesoftware/connect/connect-runtime-installer/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/
http://download.eclipse.org/eclipse/downloads/drops4/R-4.5-201506032000/
http://maven.apache.org/download.cgi
http://www.osgi.org/
http://www.amazon.com/OSGi-Action-Creating-Modular-Applications/dp/1933988916

Set up the development environment
To set up your development environment, complete the following tasks.

l Optional. Import the standard preferences

l Install the plugins

l Add the archetypes

Import the standard preferences (optional)
To import the Perceptive Connect standard preferences, complete the following steps.

1. Get the preference file by cloning the following git repo: http://pswgithub.rds.lexmark.com/integrated-
products/ipa.git

2. Click File > Import ... > General > Preferences, and then click Next.

3. In the From preference file field, browse to the preference file located in the directory cloned from the git
repo.

4. Select Import All and click Finish.

Install the plugins
To install the required plugins, complete the following steps.

Maven Integration for Eclipse
To install Maven Integration for Eclipse (m2e), complete the following steps.

Notem2emay already be installed, depending on your version of Eclipse.

1. OpenEclipse and click Help > Install New Software...

2. SetWork with to http://download.eclipse.org/technology/m2e/releases/ and press
ENTER.

3. SelectMaven Integration for Eclipse and click Next.

4. Finish the installation.

Setting Proxy for Maven in Eclipse This is required for development on Lexmark's local network.

Add the following proxy configuration to the settings.xml file located in%USERPROFILE%/.m2.

<proxies>
<proxy>

<active>true</active>
<protocol>http</protocol>
<host>ps-auto.proxy.lexmark.com</host>
<port>80</port>

<nonProxyHosts>*.pvi.com</nonProxyHosts>
</proxy>

</proxies>

If the file does not exist, create it with the following content

<?xml version="1.0" encoding="utf-8"?>
<settings

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd"

xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<proxies>
<proxy>

<active>true</active>
<protocol>http</protocol>
<host>ps-auto.proxy.lexmark.com</host>
<port>80</port>
<nonProxyHosts>*.pvi.com</nonProxyHosts>

</proxy>
</proxies>

</settings>

Now configure eclipse with the location of the settings.xml file.

1. OpenEclipse and clickWindow > Preferences > User Settings

2. ExpandMaven and underUser Settings provide path for themaven settings file

For more information, refer to the following websites.

l http://maven.apache.org/eclipse-plugin.html

l http://www.eclipse.org/m2e/

l http://www.eclipse.org/m2e/download/

Plug-in Development Environment
To install the Plug-in Development Environment (PDE), complete the following steps.

NotePDE may already be installed, depending on your version of Eclipse.

1. OpenEclipse and click Help > Install New Software...

2. SetWork with to the update URL that corresponds to your version of Eclipse, such as
http://download.eclipse.org/releases/luna or http://download.eclipse.org/releases/kepler.

3. In the filter field, type plug-in development environment and press ENTER.

4. UnderGeneral Purpose Tools select Eclipse Plug-in Development Environment and click Next.

5. Finish the installation.

For more information, refer to http://www.eclipse.org/pde/.

http://maven.apache.org/eclipse-plugin.html
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/
http://www.eclipse.org/pde/

Tycho Configurator
To install the Tycho Configurator via Discover m2e Connectors, complete the following steps.

1. ClickWindow > Preferences

2. From the list on the left, selectMaven.

3. Select Discovery and click Open Catalog.

4. In the Find field, type tycho.

5. Select Tycho Configurator and click Finish.

Note If tycho isn't listed use themanual step below

To install the Tycho Configurator manually, complete the following steps

1. OpenEclipse and click Help > Install New Software...

2. SetWork with to http://repo1.maven.org/maven2/.m2e/connectors/m2eclipse-
tycho/0.8.0/N/LATEST/

3. Underm2e extensions select Tycho Project Configurators and click Next.

4. Finish the installation.

Add the archetypes
To add the archetypes, complete the following steps.

1. ClickWindow > Preferences

2. From the list on the left, selectMaven.

3. Select Archetypes.

4. Click Add Remote Catalog...

5. Set theCatalog File field to
http://repo.pcr.psft.co/nexus/content/repositories/releases/.

6. Set theDescription to a relevant name, such as Connect Archetypes.

7. Click OK.

Build a connector
In this section, you learn how to create, modify, and deploy a new connector project with the following tasks.

l Create a new project

l Modify a project

l Configure and run the project in Eclipse

l Configure logging

l Deploy a connector to Perceptive Connect Runtime

Create a new project
Archtypes provide an easy way to get started with development in Perceptive Connect and provide basic
implementations of several common use cases. The project layout convention is amain project that contains
the launch file and target files. Under themain project you have the supporting projects.

/some-project-main
some-project-main.launch
connect.target
pom.xml
/some-project-api

....
/some-project-impl

....
/some-project-impl-test

Create a new root project based on an archetype
To create a new root project based on an archetype, complete the following steps.

1. InEclipse, click File > New > Other...

2. SelectMaven > Maven Project and click Next.

3. Keep the default settings. Verify that theCreate a simple project check box is cleared and click Next.

4. Set theCatalog to the name of the archetype catalog you created earlier, such as Connect Archetypes.

5. Verify that theShow the last version of Archetype only check box is selected.

l NoteArchetype Artifact IDs were changed before the 1.0 release of Perceptive Connect, so 0.11.0
artifacts will still appear in the list. These can be safely ignored.

6. Select the archetype with a Group Id of com.perceptivesoftware.connect.archetype and Artifact ID of
pom-root.

7. Click Next.

8. Enter a Group Id. We recommend using reverse domain notation, for example
com.mycompany.myproduct.

9. Enter an Artifact Id. This will become the name of the project. We recommend using a format of
<connector-name>-main.

10. Click Finish.

l NoteYour new project may show Eclipse errors until you update the eclipse target

Create a newmodule under the root project
To create a new module under the root project, complete the following steps.

1. Click File > New > Other...

2. SelectMaven > Maven Module and click Next.

3. Enter a project name in theModule Name field.

4. For theParent Project field, click Browse and select the root project that you previously created.

5. Click Next.

6. Set theCatalog to the name of the archetype catalog you created earlier, such as, Connect
Archetypes.

7. Select the base archetype that you would like to begin with. More information on the archetypes can be
found in Archetypes.

8. Fill out any required fields and click Finish. See the archetypes section for information on required fields.

l Note The Finish buttonmay not activate until you click off any required fields in the Eclipse Dialog

Update the target
The eclipse Target Platform determines which plug-ins your connector will be built and ran against. The
archetype's Target Platformmatches the components available in thePerceptive Connect Runtime.

To update the project target, complete the following steps.

1. In the root project, right click the TARGET file and select Open With > Target Editor.

2. In the top right corner of the screen, click Set as Target Platform. The operationmay take a few minutes
to complete.

3. Setup is complete. Close the target file.

Modify a project
This section describes how tomodify a project by adding a dependency, a referenced service, or a provided
service.

Add a dependency
To add a dependency, complete the following steps.

1. In thePackage Explorer, open theMANIFEST.MF file.

2. At the bottom of the screen, click theDependencies tab.

3. In the Imported Packages section, click Add.

4. Select the required package and click OK.

Note TheRequired Plug-ins option should be avoided except in integration test projects. See the "Use
Import-Package instead of Require-Bundle" topic in the OSGi wiki for more information.

If the package you need is not available in the list, you can add a bundle that exports that package with the
following steps:

1. Download the required bundle.

2. Right click on your TARGET file and click Open With > Target Editor.

3. In the Locations section, on theDefinitions tab, click Add.

4. Select Directory and click Next.

5. Browse to the location of the bundle and click Finish.

6. Open theContent tab.

7. In theContent section, search the list for the required bundle, such as org.apache.commons.codec
and verify that its box is checked.

8. Save and close the target file.

Add a referenced service
To add a referenced service, complete the following steps.

1. In thePackage Explorer, right-click the XML file located in theOSGI-INF folder from the Package
Explorer.

2. Click Open With > Component Definition Editor.

3. Click theServices tab located in the bottom left corner of the window.

4. UnderReferenced Services, click Add.

5. Find the service type you want to add and click OK.

6. Select the new service and click Edit.

7. Set theCardinality.

l 0..1An optional singular service.

l 1..1A required singular service.

l 0..n An optional multiple service.

l 1..n A requiredmultiple service.

8. Set thePolicy.

http://wiki.osgi.org/wiki/Use_Import-Package_instead_of_Require-Bundle
http://wiki.osgi.org/wiki/Use_Import-Package_instead_of_Require-Bundle

l static The component is deactivated and a new instance is created whenever the service is
switched.

l dynamic. The component instance remains the samewhenever the service is switched.

l Note The dynamic policy provides better performance and should be preferred. The static policy is
the default policy.

9. Add values to theBind andUnbind fields.

l Note These values will serve as themethod names that receive service references. See theCode
Samples below.

10. Click OK.

11. Click on theOverview tab located in the bottom left corner of the window.

12. Click on theClass hyperlink underComponent.

13. Add a reference and bind and unbindmethods for the new service, where themethod names are equal to
the values that you chose in step.

l See below for code samples.

14. Save the file.

Code Samples

l A singular service reference.
l Assume that Bindwas set to bind, andUnbindwas set to unbind in step 9.

private ActionManager manager;
public void bind(ActionManager newManager) {

manager = newManager;
}
public void unbind(ActionManager oldManager) {

manager = null;
}

l A mulitple service reference.
l Assume that Bindwas set to addAction, andUnbindwas set to removeAction in step 9. ```
private final List actions = new ArrayList<>();

public void addAction(Action action) { actions.add(action); }

public void removeAction(Action action) { actions.remove(action); } ```

Add a provided service
To add a provided service, complete the following steps.

1. In thePackage Explorer, in theOSGI-INF folder, right-click the XML file.

2. Click Open With > Component Definition Editor.

3. Click theServices tab located in the bottom left corner of the window.

4. UnderProvided Services, click Add.

5. Find the service type you want to add and click OK.

l Note The implementation class for this component must provide the interface, or implement the
class that you select in the list. It is a best practice to provide interfaces for services.

6. Save the file.

Creating RESTEndpoints / Handling CORSRequests
If your connector includes any REST Endpoints, we strongly recommend that your REST component(s)
extend either com.perceptivesoftware.pif.util.AbstractRESTComponent or
com.perceptivesoftware.pif.util.AbstractSecureRESTComponent. These classes, among
other things, automatically apply CORS filters to your endpoints as configured by the PCR administrator. If
you do not extend one of these classes, such as if your component extends
com.perceptivesoftware.pif.util.AbstractLifecycleComponent, you will need tomanually
set up a CORS filter for your endpoint.

Note: If you created your endpoint using the Connect Archetype from 1.3.x or later, you should be using one of
the abstract classes already.

Building a Trust Validator
A Trust Validator can be used to ensure that only authenticated users can access sensitive information
through REST/SOAP endpoints. In this way, consumers of these endpoints are forced to provide specific
headers for authentication when they make their request. TheRESTTrustValidator and
SOAPTrustValidator interfaces are used to enforce authentication on REST and SOAP endpoints
respectively. An implementer of either interfacemust then publish these interfaces as provided services
through their component definitions.

Trust Validation Diagrams

The following diagrams give a basic idea of how trust works within PCR. The first diagram does not directly
involve Connect, but simply shows how aweb applicationmight interact with some external system prior to
consuming a trusted endpoint inside the runtime.

Trust validation, step 1

Trust validation, step 2

Trust Validator Interfaces

The RESTTrustValidator interface contains 3methods:

l Object getToken(ContainerRequestContext context) throws
TrustRequiredException This method is responsible for pulling out/returning the appropriate token
from the ContainerRequestContext.

l void validateToken(Object token) throws InvalidTrustTokenException This
method is responsible for actually validating the token. When the token is valid there is "trust". When the
the token is invalid an exception should be thrown.

l Duration getTimeout() This method is responsible for setting the interval in which a token is
considered valid after a successful call to validateToken.

l void postProcess(ContainerRequestContext context, Object token) throws
Exception This method is optional and does nothing by default. It is called on every request after a
token is successfully validated (including instances where the token is retrieved from the cache and
validateToken() is not called). It may be used tomodify the context once the request has been
designated as "trusted".

The SOAPTrustValidator interface contains 3methods:

l Object getToken(SOAPMessageContext context) throws TrustRequiredException
This method is responsible for pulling out/returning the appropriate token from the
SOAPMessageContext.

l void validateToken(Object token) throws InvalidTrustTokenException This
method is responsible for actually validating the token. When the token is valid there is "trust". When the
the token is invalid an exception should be thrown.

l Duration getTimeout() This method is responsible for setting the interval in which a token is
considered valid after a successful call to validateToken.

l void postProcess(SOAPMessageContext context, Object token) throws
Exception This method is optional and does nothing by default. It is called on every request after a
token is successfully validated (including instances where the token is retrieved from the cache and
validateToken() is not called). It may be used tomodify the context once the request has been
designated as "trusted".

To create a Trust Validator service, complete the following steps:

1. Depending on whether your validator will purpose SOAP, REST or both types of web services, your
validator class should implement SOAPTrustValidator, RESTTrustValidator or both. Here is an example:

public class SampleTrustValidator implements RESTTrustValidator,
SOAPTrustValidator {

public static final String TRUST_HEADER_NAME = "X-Fake-Trust-

Header";
public static final String TRUST_HEADER_VALID = "gooduser";

@Override
public Object getToken(SOAPMessageContext context) throws

TrustRequiredException {
Map> headers = (Map>) context.get(MessageContext.HTTP_REQUEST_

HEADERS);
List trustHeaders = headers.get(TRUST_HEADER_NAME);

if (trustHeaders == null || trustHeaders.size() != 1) {
throw new TrustRequiredException(String.format("Failed to

find '%s' header in message.", TRUST_HEADER_NAME));
}

return trustHeaders.get(0);
}
@Override
public Object getToken(ContainerRequestContext context) throws

TrustRequiredException {
String headerValue = context.getHeaderString(TRUST_HEADER_

NAME);
if (headerValue == null) {

throw new TrustRequiredException(String.format("Failed to find
the '%s' header in message.", TRUST_HEADER_NAME));

}
return headerValue;

}
@Override
public void validateToken(Object token) throws

InvalidTrustTokenException {
if (!token.toString()

.equals(TRUST_HEADER_VALID)) {
throw new InvalidTrustTokenException(String.format("The '%s'

token was not valid.", TRUST_HEADER_NAME));
}

}
@Override
public Duration getTimeout() { return new Duration(1,

TimeUnit.MINUTES);
}

}

2. Create a Service Component File for the validator you implemented. Set SOAPTrustValidator,
RESTTrustValidator or both as provided services.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
name="Sample Trust Validator">

<implementation

class="com.perceptivesoftware.pif.common.trust.SampleTrustValidato
r"/>

<service>
<provide

interface="com.perceptivesoftware.pif.common.trust.RESTTrustValidato
r"/>

<provide
interface="com.perceptivesoftware.pif.common.trust.SOAPTrustValidato
r"/>

</service>
</scr:component>

Using a Trust Validator
To use a validator on new SOAP and/or REST endpoints, choose one of the following options:

1. Preferred
End users can configure a validator at runtime by configuring a trust validator on theWeb Services
page. See theConfiguring Trust Validation section of the Perceptive Connect Runtime Installation
and SetupGuide. This method does not require any additional effort by the developer and is the
recommended choice for most connectors.

2. Discouraged
You can add a validation filter service dependency to your component. This should only be done if your
connector explicitly depends on a specific trust validator because components with trust validators
assigned via this method will not bemodifiable by the end user. If you need a specific validator, complete
the following steps:

3. Build your web service through the use of one or both of the pif-jaxrs-endpoint-archetype and pif-jaxws-
endpoint-archetype.

4. In the component definition for the RESTComponent/SOAPComponent class, list
RESTValidationFilter orSOAPValidationFilter as referenced services and specify the bind and unbind
fields to these services as bind and unbind, respectively. These services become available when the
validator services component you just created is running.

5. To depend on a specific validation service, add the following to the target field:
(validatorName=<fully qualified name>) where <fully qualified name> is the fully
qualified name of the validator service.
Examplecom.perceptivesoftware.pif.common.trust.SampleTrustValidator.

To update REST/SOAP endpoints on an existing connector, refer to [Adding Validation Filters to existing web
services] (04_connector_development_tips.md).

https://docs.perceptivesoftware.com/PC!/en_US/1.0/Runtime/Print/Perceptive_Connect_Runtime_Installation_Guide_1.0.x.pdf
https://docs.perceptivesoftware.com/PC!/en_US/1.0/Runtime/Print/Perceptive_Connect_Runtime_Installation_Guide_1.0.x.pdf

Using Trust Validators with CORS and/or SSL

If an endpoint is configured to use trust, and CORS is not enabled in PCR, only same-origin requests will be
able to be trusted, since cross-origin requests will not include authentication headers or cookies. If the cookie
containing the user credentials required by the trust validator is flagged as HTTPS-only, PCR must also be
using SSL.

If PCR is behind a reverse proxy, CORS may not be required in order for trust to function properly. A proxy
does not, however, preclude the necessity of SSL if secure cookies will be used.

For further information see CORS documentation.

Enable automatic connector upgrade handling
Perceptive Connect Runtime provides the InstallService interface which represents an "upgrade hook"
that may be implemented to receivemessages about bundle updates. The implemented service will receive
an instance of UpdateInfo when a new version of the containing bundle is installed in Perceptive Connect
Runtime. UpdateInfo contains the original bundle version, the new bundle version, and the time the bundle
was upgraded. A connector may find it useful to provide an InstallService implementation so that post-
upgrade processes may be performed, such as upgrading channel mappings, updating database records, etc.

To provide an implementation of InstallService, complete the following steps.

1. Create a class that extends InstallService.

2. Override the updated(UpdateInfo info)method.

3. Implement any upgrade logic that you wish to perform.

4. Create a Component Definition that lists your class as providing the interface for the InstallService.

public class InstallServiceImpl extends InstallService {
@Override
public void updated(UpdateInfo info) {

//implement upgrade logic
}
}

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
name="PIF Sample Connector Update Service">

<implementation class="com.acme.connector.InstallServiceImpl"/>
<service>

<provide
interface="com.perceptivesoftware.pif.common.bundle.InstallService"/>

</service>
</scr:component>

Configure and run the project in Eclipse

Run and debug in Eclipse
To run or debug in Eclipse, complete one of the following steps.

l To run your connector from Eclipse, right-click the LAUNCH file and click Run As > [project name].
This will start an OSGi runtime in which all of the required Perceptive Connect bundles are installed, as
well as your connector bundles.

l To debug your connector from Ecipse, right click the LAUNCH file and click Debug As > [project
name].

Modify the run configuration
Tomodify the run configuration, complete the following steps.

1. In thePackage Explorer, right-click the LAUNCH file.

2. Click Run As > Run Configurations.

3. Modify the run configuration with the options on the following tabs.

l Bundles allow you to include and exclude bundles from theOSGi container deployed by eclipse.

l Arguments allows you tomodify VM arguments. The working directory for Eclipse and the listening
port can be set in here.

l NoteYou can change the default tcp port that the web console listens on by modifying -
Dorg.osgi.service.http.port=

l Settings is where the JRE is set. Under the Configuration Area there is the option to Clear the
configuration area before launching. By clearing this checkbox, Eclipse preserves channel mappings
and any settings that are changed in the admin console.

*** WARNING *** You should take care in changing the Run Configuration. It is very easy to include
libraries that will not be available in the PCR Runtime Distribution, breaking your connector when it is ran in
the stand-alone PCR engine.

Log and database file used in the default launch config
By default, your pif log and database files can be found in the pcr-debug directory under your Eclipse
project's Workspace. To change the location of these files you canmodify your launch file's Arguments
(Eclipse tab in Debug Configurations) and change -Dpcr.db.server.type="h2" -

Dpcr.db.databasename=${workspace_loc}/pcr-debug/PCRDebugDatabase as desired

Configure logging
You can use log files to interpret issues encountered when running Perceptive Connect Runtime. A system
administrator or developer enables logging, sets the logging state, and specifies the log file location. The
Perceptive Connect Runtime Servicemust be running to enable logging.

Configure logging in Perceptive Connect
To configure logging, complete the following steps.

1. In thePerceptive Connect Web Console, on theConfiguration tab select View Configuration. In the
Name column, locate the PIF Logger row.

2. Click theEdit button to open thePIF Logger Configurationmenu.

3. Input the values for the following logging parameters:

l Log Level. The level of detail output when exceptions occur. (pif.log.level) For more information, refer to
Logging states below.

l Log Directory. The path location of the PIF log file. (pif.log.directory)

l Logger Name. The name of the logger in the system being configured. (pif.log.name)

4. Click Save.

About the Perceptive Connect log files
Log files are located in [drive:]/{install path}/PIF/logs folder.

l pifservice-stderr.[date].log logs errors.

l pifservice-stdout.[date].log logs the standard output.

l pif.all.log combines entries from the pifservice-stderr and pifservice-stdout log files.

l commons-daemon.[date].log logs the Perceptive Connect Runtime launch process.

About the logging states
Typically, you want to set minimal logging (Level 0) to only capture critical exceptions, unless you are
debugging an issue. A verbose state (Level 4) can generate large log files affecting system performance and
hard disk space.

l Error (Level 0). This state records runtime errors or unexpected conditions about the current operation,
such as

l Assertion failures

l Network connection problems

l Issues with retrieving valid authentication tokens

l Warning (Level 1). This state records events forewarning potential problems, such as

l A non-secure data access connection

l A data access implementation failure

l Performance issues

l Info (Level 2). This state writes data to the log file as part of the normal operational flow of the service,
such as

l Startup and shutdown

l Normal timers

l Workflow events

l Debug (Level 3). This state reveals diagnostic details often useful for debugging.

l Trace/All (Level 4). This state writes all logmessages to the log file. This typically includes evenmore
verbose details for debugging.

Deploy the connector to Perceptive Connect Runtime
Eclipse, by default, will continuously compile your project and allow you to run your connector within an
eclipse debug session. However, to fully compile your connector for deployment to a stand-alonePerceptive
Connect Runtime youmust execute amaven build

To build your connector via Eclipse's m2emaven plugin, complete the following steps

1. Right click on your root maven project and select ** Maven > Update Project **

2. Right click on your root maven project and select ** Run As > Maven Install **

To build your connector via Stand-aloneMaven, complete the following steps

1. Ensure that your M2_HOME and JAVA_HOME environmental variables are correct

2. In a cygwin, dos or unix shell, navigate to your root project's directory

3. Execute mvn clean install

To verify your build look for the Reactor Summary: section in either your eclipse console output or shell
output. All projects should report SUCCESS.

* Your connector bundles will be available in the `\target` directories in
your sub-projects.

Build the connector bundles for deployment

Install the connector
To install a connector, complete the following steps.

1. In thePerceptive Connect Runtime Dashboard, click Install a Connector.

2. On theBundle Management page, there is a column on the left side of the page that says DRAG FILES
HERE. Drag your project JAR, ZIP and PCR files.

3. Perceptive Connect displays the installation results on the right side of the page.

Verify the connector installation
To verify connector installed correctly, complete the following steps.

1. InPerceptive Connect Runtime Web Console, click Perceptive Connect > View Bundles.

2. On thePerceptive Connect Runtime Web Console Bundles, there is a list of installed bundles. Verify
that the connector bundles you installed are in theActive state. If they are not, click the bundle's Start
button in theAction column.

Debugging the connector
To debug a connector that is deployed to a running instance of Perceptive Connect Runtime, perform the
following steps:

1. Run thePerceptiveConnectRuntimew.exe file.

2. Click the Java tab.

3. Insert the following in the Java Options input:

l -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=6006

l NOTE Youmay modify the suspend and address arguments to your needs. A suspend argument of ywill
cause the service to wait for the debugger to attach before completing the startup process. The address
argument defines the port on which debugging is allowed.

4. Click theApply button.

5. If the service is already running, restart the service.

To connect the Eclipse debugger to the running instance of Perceptive Connect Runtime, perform the
following steps:

1. On the Eclipse toolbar, click Run > Debug Configurations....

2. Right-click onRemote Java Application and click New on the resulting context menu.

3. On the right side of the screen, name the debug configuration in theName text field.

4. In theProject box, click onBrowse and then select the connector project to debug.

5. InConnection Properties field, fill in theHost andPort fields.

6. In theHost field, input the IP Address of themachine on which Perceptive Connect Runtime is running,
or localhost if you are debugging on the samemachine.

7. In thePort field, provide the port number that you configured to allow debugging. This value is the
argument for the address parameter entered into the Java Options field of the service executable.

Core Concepts
The Connect Scheduler design relies on a few key concepts: theScheduler, Jobs, JobTriggers, and
Schedules.

Scheduler
The Connect Scheduler provides a single Scheduler service that allows PCR users to create jobs that
trigger on a set schedule. The Scheduler registers a Job using an identifying JobDetail and executes a
Job using a registered JobTrigger that matches the identifying JobDetail. The Schedulermay contain
0..n JobTriggers associated with a single Job. However, a Job never executes with out an associated
JobTrigger, and a JobTrigger only has 0..1 associated Jobs. Each JobDetail and JobTrigger
must be unqiue within the Scheduler. The Scheduler handles conflict resultion between JobDetails and
JobTriggers based on the source of theseObjects.

Scheduler Source Based Conflict Resolution
The Scheduler provides both API calls andOSGi bindings to register Jobs and JobTriggers. The
bindings take precident over the API calls. When an added object conflicts with a newly bound object, the
Scheduler replaces the added object with the bound one, and when a bound object conflicts with a newly
added object, the Scheduler rejects the added object with an excetion. When an added object conflicts with
another stored, added object, then the new object replaces the orignal object.

The scheduler only replaces bound conflicting objects when the objects have the same Service PID. If a
newly bound object conflicts with another stored, bound object that has a different PID, then the Scheduler
logs an error and stores the new binding without registering it and without affecting the original bound object.
The stored bound object remains in this state until it is unbound, rebound, or updated. If the object is rebound
or updated, then the scheduler checks for conflicts and acts accordingly. Updating or rebinding an existing
bound object with a conflicting object removes the original, valid object.

Job
A Job is a unit a of work executed by the Scheduler based on the Schedule of a JobTrigger associated
with the Job's JobDetail. All Jobs must implement the Job interface. This interface contains a single
method execute, which consumes a JobExecutionContext that contains information about the
previous, current, and future executions of the Job. The Scheduler registers Jobs either through its API
with methods that require the Job's associated JobDetail or as a DetailedJob through its OSGi
bindings.

JobDetail
The JobDetail interface provides the identifying information for a Job, the Jobs durability, and whether or not
the Scheduler can execute the Job concurrently. The Scheduler requires a JobDetail to add a Job
through the API. When the Scheduler unregisters a JobTrigger associated with a Job, if the Job is not
durable and does not have any other associated JobTriggers, then the Scheduler also uregisters the Job.
To properly enforce OSGi binding, bound Jobs must be durable.

DetailedJob
The DetailedJob interface represents a Job that is also its own JobDetail. The Scheduler automatically
binds any OSGi Services that implement DetailedJob. If necessary, you can programatically add
DetailedJobs through the API by casting the DetailedJob to Job and JobDetail for the respective
arguments. However, the Scheduler replaces any added Job with amatching bound job, so providing your
DetailedJob as a service helps protect it against potential key conflicts.

JobTrigger
The JobTrigger interface defines a schedule, along with other properties, that describes how and when the
Scheduler executes a Job. Multiple JobTriggers can reference the same job, but each JobTrigger only has
one associated Job. Once the Scheduler contains a Job and a JobTrigger associated with the Job's
JobDetail, then the Scheduler begins executing the Job base on the Scheduler provided by the
JobTrigger.

Each JobTrigger contains an activation date, a deactivation date, the key of the Job associated with the
JobTrigger, a priority, and a Schedule. Reguardless of the JobTrigger's Schedule, the Scheduler will
not execut the associated Job before the activation date or after the deactivation date. However, the
Scheduler cannot stop a Job that continues an execution past its deactivation date. If a JobTrigger does
not have an activation date, then the Scheduler assigns it the current date once the JobTrigger's associated
Job is also in the Scheduler. If a JobTrigger does not have a deactivation date, the the Scheduler
executes the associated Job indefinitely according to the JobTrigger's Schedule.

A JobTrigger's priority determine execution order when the Scheduler triggers multiple Jobs at once.
JobTriggers with higher priorities execute before those with lower priorties. JobTriggers with the same priority
execute in an indeterminate order.

Schedule
A Schedule defines when a JobTrigger fires within its activation and deactivation date. There are two
provided Schedule types: CronSchedule and SimpleSchedule.

CronSchedule
A CronSchedule uses a Cron Expression to define when the JobTrigger fires. For example String Cron
Expressions and format information, see the Oracle documentation for A Cron Expression. The
CronSchedule follows the Cron Expression using its Time Zone. The PCR Scheduler provides a
JobTrigger with a CronSchedule through the PCR Config Admin. This CronScheduleJobTrigger is
the primary source for bound JobTriggers.

SimpleSchedule
A SimpleSchedule defines an optionally repeating Schedule that fires on a set interval. Provided the
Schedule exists between its JobTrigger's Activation Date and Deactivation Date, a SimpleSchedule alway
fires at least once.

All SimpleSchedules have a repeat count and a repeat interval. The repeat count may be -1, 0, a positive
integer. A -1 repeat count indicates that the SimpleSchedule repeats indefinitely, and a 0 repeat count
indicates that the SimpleSchedule executes once. For definite repeat counts, themaximum number of
Scheduled executions is the repeat-count+1. If activation-date + (repeat-count * (job-

execution-time + repeat-interval)) > deactivation-date, then SimpleSchedule may
execute less than this max.

The repeat interval is a long representing the number of milliseconds between Schedule executions. This
interval must be 0 or a positive long. If the job allows concurrent execution, then a Schedule with a 0 repeat
interval fires all of its executions concurrently. If the job does not allow concurrent execution, then a Scheduler
with a 0 repeat interal fires each execution as soon as the previous execution finishes.

The PCR Scheduler only provides SimpleSchedules through its API. The SimpleSchedule API has some
unintuitive behavior that should not be exposed non-programatically. The behavior occurs because the
SimpleSchedule starts calculating fire times from themoment the Scheduler registers it. Registering a
SimpleScheduler with an associated Job that appears after the SimpleSchedule's JobTrigger Activation
date exposes this problem. Once the Scheduler registers the SimpleSchedule JobTrigger with its Job,
the SimpleSchedule calculates the number of missed fire times between its Activation Date and the time
the Job appeared and fires accordingly. So if your SimpleSchedule activates now, fires once every minute and
it takes 10minutes for it to register with its Job, then the SimpleSchedule immediately fires 10 times.

Using the Connect Scheduler
The Connect Scheduler provides two access routs: through the API, and throughOSGi Services. The
Connect Scheduler exposes the API through its Scheduler service and some builder classes. The
Scheduler service dynamically binds all JobTrigger and DetailedJob services present in its OSGi
environment.

http://www.quartz-scheduler.org/api/2.2.1/org/quartz/CronExpression.html
https://docs.oracle.com/cd/E12058_01/doc/doc.1014/e12030/cron_expressions.htm

Using the API
The Connect Scheduler API allows you to programatically register your own Jobs, JobDetails, and
JobTriggers through your ownOSGi classes. The API also provides CronSchedule,
SimpleSchedule, JobDetail, and JobTrigger builder classes to assist you in creating your own
objects.

Scheduler Service
To use the API, your OSGi servicemust bind
com.perceptivesoftware.pif.scheduler.Scheduler. Once bound, the Scheduler service
provides methods to add and remove Jobs and JobTriggers. Bound Connect Scheduler objects take precident
over added Connect Scheduler objects, so be aware that the Schedulermay replace your added Jobs and
JobTriggers with bound ones if the bound objects have the same key as an added object. See the Scheduler
Javadoc for more detailed API behavior.

Builder classes
The API provides classes that help build Connect Scheduler objects. These builders cover each of the
provided implementations for their related objects. If necessary, youmay provide your own imlementations for
the JobDetail, JobTrigger, CronSchedule and SimpleSchedule interfaces. See the related Javadocs for more
information about each interface's expected behavior.

UsingOSGi Services
The Connect Scheduler dynamically binds any service that provides the DetailedJob or JobTrigger
interface. The bindings replace any added objects that conflict with the bound object. The Connect Scheduler
provides two classes to simplify bindings: a CronSheduleJobTrigger that creates configurable JobTrigger
services, and an AbstractDetailedJob that provides the base implementation for DetailedJob servies.

CronScheduleJobTrigger
The CronScheduleJobTrigger is aManagedService configured through Config Admin that provides a
JobTrigger service with a CronSchedule. The CronScheduleJobTrigger provides every field required to
register a JobTrigger with a few default values that cover most use cases. Without explicitly setting the
related configuration properties, the JobTrigger activates once its saved, never deactivates, and uses the
systems default Time Zone for the CronSchedule. The configuration in OSGi displays its Trigger Key as its
label.

AbstractDetailedJob
The Connect Scheduler provides AbstractDetailedJob as a starting point for your DetailedJob
service. An AbstractDetailedJob is an AbstractLifeCycleComponent that implements
DetailedJob. This component expects the DetailedJob's JobKey and description to come from either its
registration or configuration properties as defined by getSchedulerDescriptionProperty(),
getSchedulerJobGroupProperty(), and getSchedulerJobNameProperty(). If these values
need to be hardcoded, youmust override getKey() and 'getDescription()' and simply return null from the
abstract property methods. However, we suggest allowing users to configure the JobKey. Each JobKey
must be unique within the Scheduler. If your hardcoded JobKey conflict with another bound DetailedJob,
you will need to recompile your project with a unique key to guarantee your DetailedJob registers properly.

AbstractDetailedJob are all durable Jobs. You cannot override isDurable(). By default,
AbstractDetailedJob allow concurrent execution. If your AbstractDetailedJob implementation cannot
execute concurrently or need configurable concurrency, youmust override
isConcurrentExecutionDisallowed().

Connector Development Tips
This section will contain various tips, tricks, and best practices that have been established connector
developers have encountered during development.

Connector Names and Bundle names

Connector Name
PCR 1.5 introduces a new, optional field for bundlemanifests called PCR-Connector-Name. It is
recommended that connector developers add this property to the manifest.mf for each of the bundles (not
including third-party dependencies which are packaged with the connector) in their connector. In PCR 1.5, this
field is only used to identify the source of JAX applications on theWeb Services page. However, future
releases will build upon the larger concept of a concrete "connector" within the runtime.

Though encouraged, the PCR-Connector-Name header is not required in PCR 1.5. Therefore, connector
developers are not required to release a new version simply to add this field. Features in PCR core which
expect the PCR-Connector-Name header will use a new set of utilities to make an educated guess based
on the available information at execution time.

Bundle Name
Manifests also contain a Bundle-Name field, part of the OSGi specification. The Bundle-Name should be a
namewhich encompasses all of the components/services and code inside the bundle.

Example
project.logging/META-INF/MANIFEST.MF

PCR-Connector-Name: My Connector
Bundle-Name: Logging Utilities

project.common/META-INF/MANIFEST.MF

PCR-Connector-Name: My Connector
Bundle-Name: Core Utilities and Interfaces

project.rest/META-INF/MANIFEST.MF

PCR-Connector-Name: My Connector
Bundle-Name: REST Endpoints for Application

Readers andWriters
l ParameterSource and ParameterTarget types must be visible to JAXB to enable XML
serialization and de-serialization. To be visible, the class definitions need to be public or static.

Adding Validation Filters to existing web services
As of PCR 1.2, connector developers have the ability to add validation filters to their web services. For new
connectors, archetypes have been updated accordingly. However, existing connectors can bemodified to add
this new functionality:

For existing RESTServices:
1. Your RESTComponent should extend AbstractRESTComponent rather than

AbstractLifecycleComponent. If your REST Service already extends
AbstractRESTComponent, skip to step 2. If not, complete the following steps:

2. If the REST service was created using a pre-1.3 archetype remove the declaration of the JAXRSService
in your RESTComponent as it is already declared in the AbstractRESTComponent class.

3. In the same class, modify the startupmethod by changing service.registerApplication to
registerApplication

4. In the same class, remove themethods registerServlet and unregisterServlet. Additionally,
you can remove the shutdownmethod.

5. In the component definition to your RESTComponent, update the service reference to the JAXRSService
to call bind and unbind rather then registerServlet and unregisterServlet

6. In the component definition to your RESTComponent, youmust add the reference to the REST filter
service RESTValidationFilter.

7. To require a specific validation service, youmay add the following to the target attribute of the service
reference: (validatorName=<fully qualified service name>), where <fully

qualified service name> is the fully qualified name of the service. For example,
com.perceptivesoftware.imagenow.service.validator.ImageNowValidator.

Note: Version 1.1 of Content Connector includes an ImageNow Validator service that extracts a
sessionHash cookie from aREST request and forwards the session hash on to the ImageNow service for
validation. The ImageNow Validator service can be used to require validation with ImageNow on your REST
endpoints. For more information on the ImageNow Validator service, consult the Content Connector Install
Guide.

For existing SOAPServices:
1. Create a local variable validationFilter of type SOAPValidationFilter so that you can store

the filter reference. Add in additional bind() and unbind() methods so that your component can reference
the validation filter if it exists:

``` public void bind(SOAPValidationFilter newValidationFilter) { validationFilter = newValidationFilter; }

public void unbind(SOAPValidationFilter oldValidationFilter) { validationFilter = null; } ```

2. Modify the call to registerEndpoint in the startup by adding the validationFilter as an additional argument
like so:

public void startup() throws Exception { ... service.registerEndpoint(ALIAS,
endpoint, validationFilter); ... } 3. In the component definition to your SOAPComponent, you
must add the reference to the SOAP filter service SOAPValidationFilter

About file descriptions
Launch files
The launch file contains the information needed for your Eclipse run and debug configuration, including VM
arguments, JRE settings, and bundles to install in the runtime service.

Target files
Refer to the "Target Platform" topic in Eclipse documentation.

POM files
Refer to the "POM" topic in Maven documentation.

Manifest files
In OSGi, themetadata about how to run a bundle (which is a JAR with OSGi metadata) is contained in the
manifest, MANIFEST.MF. This file is located in ./META-INF/ within a JAR, as well as in any Eclipse PDE
project.

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fconcepts%2Ftarget.htm
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html


Component descriptor files
Component descriptors are XML files located in theOSGI-INF/ directory of an OSGI bundle. These files are
used by the Declarative Services component framework. A component descriptor contains the name of the
class providing the component implementation, as well as a list of services that the component provides and
services that the component is bound to.

About archetypes
Maven Archetype is a templating tool for creating Java projects. Several Maven archetypes are provided to
ease connector development. A brief description of each archetype and it's configuration parameters is
included below.

General configuration
Every maven artifact is uniquely identified by aGroup Id, Artifact Id, andVersion. When creating a new
Maven project or Mavenmodule in Eclipse, these are configured after selecting an archetype. In general, the
Group Id andVersion should be consistent for all projects in a connector, and should be defined in the root
project, and will be inherited by all child projects. We recommend aGroup Id that follows standard Java
package naming conventions (for example, com.mydomain.myconnector).

Additionally, there is a default Package associated with the project. This can be ignored for the root project.
For modules, this is the package in which generated source code is placed. Package names should be
consistent with the Group Id(for example com.mydomain.myconnector.endpoints). A modulemay
contain any number of packages. This setting is only used when generating archetype source files.

Archetype descriptions

pif-jaxrs-endpoint-archetype
Creates a simple JAX-RS web service with a single "HelloWorld" REST endpoint.

Parameters

l endpoint The name of the class providing the endpoint, the URL alias of the endpoint, and the name of
the component providing the web service.

pif-jaxws-endpoint-archetype
Creates a simple JAX-WS web service with a single "HelloWorld" SOAP method.

Parameters

l endpoint The name of the class providing themethod, the URL alias of the endpoint, and the name of the
component providing the web service.

http://maven.apache.org/guides/introduction/introduction-to-archetypes.html


pie-trigger-archetype
Creates a simple PIE Trigger service that has a single identifier, and a few output parameters.

Parameters

l connector The "component.group" property in the trigger's component descriptor.

l trigger The name of the trigger including it's class name, and the name of the component providing the
Trigger service.

pie-simple-connector-archetype
Creates a simple PIE Action service that has a single input and output parameter.

Parameters

l action The name of the action including it's class name, and the name of the component providing the
Action service.

l connector The "component.group" property in the trigger's component descriptor and the bundle-name
property in themanifest file.

pie-configurable-connector-archetype
TheOSGi Metatype spec provides a way for services to be configured at runtime. Currently, the Connect
Runtime uses the Felix web console to provide a UI for Metatype configuration. At the service level, the
metatype is described via an .XML file in OSGI-INF/metatype/. This archetype creates a project
containing ametatype definition for a configurable action. For a brief introduction tometatypes, we suggest
this article.

Parameters

l action The name of the action including it's class name, and the name of the component providing the
Action service.

l connector The "component.group" property in the trigger's component descriptor and the bundle-name
property in themanifest file.

pie-connector-unittest-archetype
Creates a bundle fragment project containing unit tests for an Action within the host project. The test class in
this file is designed to test an Action, so this should be paired with either the pie-simple-connector-archetype
or pie-configurable-connector-archetype for a (mostly) working example.

http://felix.apache.org/site/apache-felix-metatype-service.html
http://blog.osgi.org/2011/03/metatypes.html


Parameters

l connector The bundle-name property in themanifest file.

l action The name of the action under test.

l host_artifactId The artifact id of the bundle under test.

pie-connector-integration-test-archetype
Creates a bundle that provides basic integration test functionality. Test fixtures and a launch file are included
so the developer can focus on quickly writing tests.

Parameters

l connector-name The name of the connector that the integration test bundle will be testing. This value
will be included in the test bundle's manifest.

imagenow-connector-archetype
Creates a simple PIE Action service that does not have any input or output parameters defined. The action
also has a service reference to the ImageNowEndpoint in Content Connector. This archetype should be
used when creating a connector that requires direct communication with ImageNow.

Parameters

l action The name of the action including it's class name, and the name of the component providing the
Action service.

l connector The "component.group" property in the trigger's component descriptor and the bundle-name
property in themanifest file.

connect-assembly-archetype
Creates amaven project that inserts project module artifacts into a zip file. By default, the only module
artifacts included in the zip file are jar files. Add eachmodule of your project as a dependency in the pom of the
assembly archetype project to include themodules' artifacts in the zip archive. The zip archive is especially
useful for connectors that are composed of multiple bundles. The single zip archive can be distributed to
customers and installed through the Connector Installer UI of Perceptive Connect Runtime.



What is CORS
Terms

l CORS: Cross-Origin Resource Sharing

l origin: The protocol, fully qualified domain, and port (such as protocol://fulldomain:port/).

l protocol: for the purpose of this documentation, protocol refers to either http or https in a web
addresss.

l domain: The fully qualified name for a web address includes all sub-domains as well as the domain root
and TLD extension (such as sub1.sub2.sub3.domain.com); alternatively, a domainmay be a
machine name (such as APPSERVER-1)

l cross-origin: An XMLHttpRequestmade from one origin to another is considered cross-origin if the
source and destination have different origins.

l same-origin: An XMLHttpRequestmade from one origin to another is considered same-origin if the
source and destination have identical origins.

l secure cookie: A cookie which is only sent by the browser when the destination of the request
(regardless of whether it is cross-origin or same-origin) is using SSL.

l HTTP-only cookie: A cookie which is not readable from client-side code; only the browser and server
are able to read HTTP-only cookies.

l CSRF: Cross-site request forgery, an attack vector similar to XSS but not requiring JavaScript to exploit.
Sometimes protected against by the use of CSRFTokens.

Detailed Explanation
CORS allows JavaScript code that has been served from origin A to access resources served by origin B
inside the client's browser. If a web application served at app1.domain.com (origin
http://app1.domain.com:80/) initiates a request to app2.domain.com (origin
http://app2.domain.com:80/), that request is considered cross-origin. The web server for
app2.domain.com (e.g. Apache, Tomcat, Jetty, Nginx, PCR, etc) must be configured to allow cross-origin
requests.

However, if a web application running on a web server makes a request to another application running on the
sameweb server, that request is not considered to be cross-origin. For example, a web application running at
apps.domain.com/app1/making a request to an application running at apps.domain.com/app2/ is
not cross-origin, because the origin for both applications is http://apps.domain.com:80/.

CORSRequests with Secure Data
NoteSecure data in the examples below refers only to data that is domain-specific, such as cookies or
authentication headers. It does not explicitly mean that the data is served over https.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Definition_of_an_origin
https://en.wikipedia.org/wiki/Domain_name
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Definition_of_an_origin
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Definition_of_an_origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#Secure_and_HttpOnly_cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#Secure_and_HttpOnly_cookies
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#Synchronizer_.28CSRF.29_Tokens


A cross-origin request with credentials occurs when the request from app1.domain.com to
app2.domain.com includes cookies and other secure data stored in the browser related to
app2.domain.com. In other words, the browser must have previously visited app2.domain.com or some
other application(s) which set data (such as cookies and authentication headers) for *.domain.com in order
for secure data to be included in a request from app1.domain.com to app2.domain.com.

If the app2.domain.com application sets any cookies (such as a lastAccess cookie), they will be ignored
by the browser during a CORS request unless the withCredentials flag is set to true. In that case, the
cookie will be set normally and will be included in subsequent CORS requests to app2.domain.com which
use the withCredentials flag.

Tomake a CORS request with credentials, youmust set the withCredentials flag on the
XMLHttpRequest.

Note:Cookies for a given host are shared across all the ports on that host. This differs from the usual "same-
origin policy" used by web browsers that isolate content retrieved via different ports.

What CORSCannot Do
A cross-origin request from app1.domain.com to app2.domain.com will not include secure data related
to app1.domain.com, regardless of whether the withCredentials flag is set. However, secure data
which is tied to .domain.com or *.domain.com will be sent with the requests when withCredentials
flag is set.

If you wish to send secure data from app1.domain.com to app2.domain.com, you will either need to use
a reverse proxy, or you will need to attach the desired data directly to the CORS request in the form of custom
headers. In the latter case, you will also need to ensure that the server running app2.domain.com is
configured to allow these headers in cross-origin requests. An example of this scenario is using Trust in PCR.
For more information about Trust, refer to the sections related to Trust Validators and Validation Filters in
"Build a Connector" and "Connector Development Tips". NoteSpecific instructions for configuring either
allowed CORS headers or a reverse proxy are outside the scope of this document.

CORS, PCR, and Your Application(s)
There are a wide variety of ways in which PCR, Integration Server, and other applications may be deployed.
Each variation will require slightly different configuration, based on the your needs. The following examples
show how PCR might interact with a Perceptive Experience application which uses Integration Server
session tokens for user authentication.



Passing secure data from Perceptive Experience to PCR
Although the explanations below demonstrate how an Experience application can pass its credentials to
PCR, it is very important to reiterate that CORS does not allow one origin to send its own secure data (such
as cookies or headers) to an application with a different origin. However, in some of the examples below, the
desired credentials are stored in a browser cookie with the server's domain (such as localhost). Because
of this, the cookie from Experience would normally be sent by the browser if the user interacted directly with
PCR, as would cookies sent by any application which runs on localhost. Because these credentials are
applicable to PCR's origin from the browser's perspective, they are included in CORS requests made using
the withCredentials flag.

PCR and Experiencemust use a reverse proxy if they are on different domains. This is because cookies are
tied to a specific domain, and a CORS request from Experience to PCR with credentials will only include
cookies tied to the domain on which PCR is running.

The following list provides a description of the colored arrows used to connect services in the diagrams below.

l BlackA black arrow indicates that the communication between the systems is a plain same-origin
request.

l OrangeAn orange arrow represents a request which is cross-origin but does not use the
withCredentials flag and therefore does not include cookies or other secure data.

l Green A green arrow represents a request which is cross-origin and which also sets the
withCredentials flag to true. These requests may include domain cookies or other secure data as
described under each diagram.

These examples show a few different ways that PCR can interact with Perceptive Experience Applications,
but any web application could be used in place of Experience. This is not meant to be a complete list of all
possible scenarios, but rather a representative set of examples.

Although the examples refer to a reverse proxy, in practice it could be a load balancer, firewall, or other
intermediate system. These systems have a wide range of possible configurations, some including the
termination of SSL at the barrier and using plaintext for internal communication. Generally speaking, these
variations in network topology are transparent to the browser and do not have an effect on the examples
below.



Example 0

System layout

CORS system connections - example 0

Sequence diagram

CORS sequence diagram - example 0

In this example, all of the systems are behind a reverse proxy and aliased to the same domain and port. As a
result, AJAX requests between them are considered same-origin, and CORS does not come into play.



Example 1

System layout

CORS system connections - example 1

Sequence diagram

CORS sequence diagram - example 1



In this example, all of the browser's requests to the different systems go through a reverse proxy. In the cross-
origin request using the withCredentials flag, the sessionHash cookie from Integration Server will be
included by the browser. In the request which does not set the flag, the cookie is not sent to PCR.

Example 2

System layout

CORS system connections - example 2

Sequence diagram

CORS sequence diagram - example 2



In this example, the browser's requests to Experience and Integration Server go through a reverse proxy,
while the requests to PCR do not. As a result, all interaction between the Experience application and PCR is
cross-origin, but the sessionHash cookie set by Integration Server will never be sent by the browser,
regardless of the withCredentials flag. This is because PCR is on a different domain from Experience/IS,
not just another origin on the same domain. Since the cookie is tied to domain.com, it cannot be sent to
pcr-server.

Example 3

System layout

CORS system connections - example 3



Sequence diagram

CORS sequence diagram - example 3

In this example, the Experience application is running within PCR itself. As a result, all interactions between
Experience and PCR are same-origin, and no special configuration is required to pass the sessionHash
cookie set by Integration Server.

Note: The proxy for Integration Server in this example could be a software proxy within PCR or another proxy
server.

Example 4 (Hypothetical)

System layout

CORS system connections - example 4



Sequence diagram

CORS sequence diagram - example 4

This is a hypothetical variation of Example 1 above. In this example, each application lives on a subdomain of
apps.domain.com. Integration Server would be configured to set the sessionHash cookie for
.apps.domain.com instead of themore specific default of is.apps.domain.com*. As a result, in the
cross-origin request using the withCredentials flag, the sessionHash cookie from Integration Server
will be included by the browser. In the request which does not set the flag, the cookie is not sent to PCR.

*Note: Integration Server does not currently support this functionality, but we have suggested it to the Content
teams.

CORSwith Secure Cookies
If you anticipate that some cookies included with CORS requests to PCR might be flagged as secure, you
must also ensure that PCR is running under SSL. If it is not, the secure cookies will never be received by
PCR, regardless of whether or not the incoming CORS request sets the withCredentials flag.

See Appendix E: Configuring SSL in the Connect Install Guide for more information about configuring PCR to
use SSL.



Making CORSRequests from YourWeb Application
If you are developing a web application (such as an Experiencemodule), and your application will make REST
calls to PCR, follow the instructions in Appendix B of the Connect Install Guide to configure PCR to allow
CORS requests. Once PCR is properly configured, you canmake CORS requests from your web application.

Using Pure Javascript
If you are not using jQuery (or a front-end framework which uses jQuery for AJAX requests), this is a very
basic example for how youmight make a CORS request to PCR from your application.

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://pcr-server:80/some/endpoint', true);
xhr.send(null);

If you want to use cookies or secure data set by PCR (such as the user's login session), you need to set the
withCredentials flag on your xhr object.

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://pcr-server:80/some/endpoint', true);
xhr.withCredentials = true;
xhr.send(null);

Using jQuery
The jQuery equivalents for the two previous examples are as follows:

$.ajax({'url': 'http://pcr-server:80/some/endpoint'});

$.ajax({
'url': 'http://pcr-server:80/some/endpoint',
'xhrFields': {

'withCredentials': true
}

});

Passing Secure Data from YourWeb Application to PCR
If you want to make AJAX requests from aweb application to PCR which include cookies and/or other secure
data for your web application's domain, either both applications must be running on the same domain, or you
must use a reverse proxy. As mentioned above, CORS requests do not allow one origin to send its own
secure data to another origin. In such a case, requests made from your application to PCR are likely to be
considered same-origin.



Handling CORSRequests Made to Your Connector's Endpoint

Using PCRGlobal CORSSettings
If you are developing a connector for PCR which will include a REST endpoint that doesn't require any
advanced CORS directives but will be used from cross-origin, there are no extra steps you need to take at
development time. However, the PCR administrator will need to follow the instructions in the Connect Install
Guide (LINK) to configure PCR to allow CORS requests. Once PCR is properly configured, your endpoint will
be able to receive CORS requests from external web applications.

Using JAX-RSAnnotations
If your connector might be deployed in a runtime which has CORS disabled, or if you need to override some
settings for a specific endpoint or method, youmay use the JAX-RS annotation
CrossOriginResourceSharing to set specific CORS settings.

The following settings in Connect runtime can be overridden by the CrossOriginResourceSharing
annotation.

l connect.rs.cors.allow.credentials: allowCredentials

l connect.rs.cors.allow.all.origins: allowAllOrigins

l connect.rs.cors.allowed.origins: allowOrigins

An example of the CrossOriginResourceSharing annotation is below. The annotation can be applied to
an entire class, to individual methods, or both. Themost specific annotation or filter is the one which will be
applied to CORS requests for a given path.

@CrossOriginResourceSharing(
allowOrigins = {

"http://localhost:8080"
},
allowCredentials = true,
allowHeaders = {

"x-custom-1", "x-custom-2"
},
exposeHeaders = {

"x-custom-3", "x-custom-4"
},
maxAge = 1,
allowAllOrigins = false,

)

Choose the properties that are right for your endpoint/method.

See documentation for org.apache.cxf.rs.security.cors for more details on the available
properties.



Explicitly Setting CORSHeaders
Themost manual option for handling CORS requests for your endpoint is to explicitly define @OPTIONS
methods for any endpoints which will be accessible from other origins. You will also need tomanually set the
appropriate CORS headers in the response sent by both the OPTIONSmethod as well as in the actual (e.g.
GET, POST, etc) method.

For example, this method sets headers for the preflight request.

@OPTIONS
@LocalPreflight
@Path("/")
public Response options() {

return Response.ok()
.header(CorsHeaderConstants.HEADER_AC_ALLOW_METHODS, "GET

DELETE PUT")
.header(CorsHeaderConstants.HEADER_AC_ALLOW_CREDENTIALS,

"true")
.header(CorsHeaderConstants.HEADER_AC_ALLOW_HEADERS, "x-

custom-1, x-custom-2")
.header(CorsHeaderConstants.HEADER_AC_ALLOW_ORIGIN,

"http://localhost:8080")
.build();

}

Use@LocalPreflight when you want to overwrite the OPTIONS preflight when Connect runtime is configured
for CORS.

Once a browser passes the preflight check, it makes the actual request, which is handled by this method.

@GET
@Path("/")
public Response DoWork(@QueryParam("param1") String param1) throws
Exception {

String message = "Welcome to DoWork with " + param1;
// do something with param1
Gson gson = new Gson();
return Response.status(200)

.header(CorsHeaderConstants.HEADER_AC_ALLOW_METHODS, "GET
DELETE PUT")

.header(CorsHeaderConstants.HEADER_AC_ALLOW_CREDENTIALS,
"true")

.header(CorsHeaderConstants.HEADER_AC_ALLOW_HEADERS, "x-
custom-1, x-custom-2")

.header(CorsHeaderConstants.HEADER_AC_ALLOW_ORIGIN,
"http://localhost:8080")

.entity(gson.toJson(message))

.build();
}



Configuring or Overriding CORS in Either Situation
The recommended approach to using CORS in PCR is to enable it globally and, if necessary, annotate
endpoints/methods which require specific CORS configuration different from the anticipated global settings.
Using both annotations andmanually handling the OPTIONS request is technically possible, but is prone to
subtle errors if not done correctly.

Setting Browser Cookies from Your Endpoint
If your REST endpoint sets one or more browser cookies as part of handling web requests, cross-origin
requests made to the endpoint must set the withCredentials flag to true in order for the cookies to be
persisted. Same-origin requests do not require any special configuration to set browser cookies.

Appendix: CORSConfiguration for Web Servers
Typical deployments of Connect Runtime which include Experience and Integration Server will likely have
Experience and Integration Server running under an Apache Tomcat server. While the sections above
describe how to configure PCR for incoming CORS requests, it is also important to note that Integration
Server itself can potentially be on the receiving end of a cross-origin request. This requires Tomcat to have a
CORS filter configured either globally or for the IS application specifically. One key benefit of this approach is
that it removes the requirement whichmandates that the Experience applicationmust run from the same
Tomcat server as Integration Server. This does not necessarily eliminate the need for a reverse proxy in all
scenarios. It simply allows for more flexibility in deployments.

Configuring CORS in Tomcat
As with many Tomcat configurations, CORS can be configured globally for all Catalina applications on the
server or just one. Here is a simple example of a CORS filter configuration:

<filter>
<filter-name>CorsFilter</filter-name>
<filter-class>org.apache.catalina.filters.CorsFilter</filter-class>
<init-param>

<param-name>cors.allowed.origins</param-name>
<param-value>http://domain1.com</param-value>

</init-param>
<init-param>

<param-name>cors.allowed.methods</param-name>
<param-value>GET,POST,HEAD,OPTIONS,PUT</param-value>

</init-param>
<init-param>

<param-name>cors.allowed.headers</param-name>
<param-value>Content-Type,X-Requested-With,accept,Origin,Access-

Control-Request-Method,Access-Control-Request-Headers</param-value>
</init-param>
<init-param>



<param-name>cors.exposed.headers</param-name>
<param-value>Access-Control-Allow-Origin,Access-Control-Allow-

Credentials</param-value>
</init-param>
<init-param>

<param-name>cors.support.credentials</param-name>
<param-value>true</param-value>

</init-param>
<init-param>

<param-name>cors.preflight.maxage</param-name>
<param-value>10</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>CorsFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Example adapted from Tomcat's documentation

OtherWeb Servers
Most web servers provide a way to configure CORS settings for individual sites, globally, or some
combination thereof. For specific instructions for your web server, refer to the server's documentation. An
additional resource is enable-cors.org, which provides configuration examples for a wide range of servers and
clients.

Frequently Asked Questions
This section contains the answers to questions that either have an unexpected answer or that we have
encountered commonly when working with connector developers.

Q. I am attempting to use packages in the "pif.test_utils" bundle, and am
seeing error messages such as "Package uses conflict: Import-Package:
org.apache.http.impl.auth; version="4.3.3"" at runtime. What is going on?
Typically, the uses conflict means that there is a version incompatibility between different bundles importing
the same package. See this article for an in-depth explanation. However, we encountered this specific error
message when the "pif.cxf" bundle was not being imported into the project. TheOSGI dependency resolver
sometimes returns unexpected error messages, and this was one of those instances.

http://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#CORS_Filter
http://enable-cors.org/
http://spring.io/blog/2008/11/22/diagnosing-osgi-uses-conflicts/


Q. I am encountering Java.lang.NoClassDefFoundError or
java.lang.ClassNotFoundException at runtime. How do I resolve these
error messages?
Unfortunately, this is a fairly common issue with OSGI applications. As with any ordinary Java application,
these exceptions mean that the class could not be found or could not be instantiated by the classloader. A
goal of bundle package exports is to avoid this type of run-time error, and replace it with an unresolved bundle,
which is easier to troubleshoot. Typically, this problem is encountered with platform-dependant classes that
are provided by the Java runtime (ie. sun.* or javax.* packages). By default, these packages are blocked by
the Felix classloader. The reasoning for this is that these packages are platform specific, and thus, not
guaranteed to be available on every JVM. As a developer, this is an annoyance as the error is only exposed at
runtime via NoClassDefFoundError/ClassNotFoundException.

We are investigating a better way for resolving these issues, but the current solution is as follows:

1. Add the problem package as an optional import to your manifest.

2. In Eclipse, open theManifest file, and click on the 'Dependencies' tab.

3. Click 'Add' under 'Imported Packages' and add the required package. In the example above, this would
be "javax.imageio.metadata"

4. Select the newly added package, and click 'Properties'.

5. Check the 'Optional' checkbox, and click 'OK'

6. Save theManifest file, and you should now see something like
javax.imageio.metadata;resolution:=optional, if you view the file in a test editor.

7. Add the package to the runtime configuration.

l NOTE This stepmust be done in the installed PCR instance. In other words, anyone who installs your
connector will need to perform this step after connector installation.

1. Open the PCR Install Directory/conf/config.properties for the currently installed runtime

2. Add the new package (example. javax.imageio.metadata) to the
org.osgi.framework.system.packages.extra setting.

3. Save the file. Youmay also need to restart the runtime.

Troubleshooting this type of issue with system packages typically involves multiple iterations of the above
steps. The reason is that resolving one exceptionmight expose another later in the code path.


	Prerequisites
	Terminology
	Set up the development environment
	Import the standard preferences (optional)
	Install the plugins
	Maven Integration for Eclipse
	Plug-in Development Environment
	Tycho Configurator

	Add the archetypes

	Build a connector
	Create a new project
	Create a new root project based on an archetype
	Create a new module under the root project
	Update the target

	Modify a project
	Add a dependency
	Add a referenced service
	Code Samples

	Add a provided service
	Creating REST Endpoints / Handling CORS Requests
	Building a Trust Validator
	Trust Validation Diagrams
	Trust validation, step 1
	Trust validation, step 2

	Trust Validator Interfaces

	Using a Trust Validator
	Using Trust Validators with CORS and/or SSL

	Enable automatic connector upgrade handling

	Configure and run the project in Eclipse
	Run and debug in Eclipse
	Modify the run configuration
	Log and database file used in the default launch config

	Configure logging
	Configure logging in Perceptive Connect
	About the Perceptive Connect log files
	About the logging states

	Deploy the connector to Perceptive Connect Runtime
	Build the connector bundles for deployment
	Install the connector
	Verify the connector installation
	Debugging the connector


	Core Concepts
	Scheduler
	Scheduler Source Based Conflict Resolution

	Job
	JobDetail
	DetailedJob

	JobTrigger
	Schedule
	CronSchedule
	SimpleSchedule


	Using the Connect Scheduler
	Using the API
	Scheduler Service
	Builder classes

	Using OSGi Services
	CronScheduleJobTrigger
	AbstractDetailedJob


	Connector Development Tips
	Connector Names and Bundle names
	Connector Name
	Bundle Name
	Example

	Readers and Writers
	Adding Validation Filters to existing web services
	For existing REST Services:
	For existing SOAP Services:


	About file descriptions
	Launch files
	Target files
	POM files
	Manifest files
	Component descriptor files

	About archetypes
	General configuration
	Archetype descriptions
	pif-jaxrs-endpoint-archetype
	Parameters

	pif-jaxws-endpoint-archetype
	Parameters

	pie-trigger-archetype
	Parameters

	pie-simple-connector-archetype
	Parameters

	pie-configurable-connector-archetype
	Parameters

	pie-connector-unittest-archetype
	Parameters

	pie-connector-integration-test-archetype
	Parameters

	imagenow-connector-archetype
	Parameters

	connect-assembly-archetype


	What is CORS
	Terms
	Detailed Explanation
	CORS Requests with Secure Data
	What CORS Cannot Do


	CORS, PCR, and Your Application(s)
	Passing secure data from Perceptive Experience to PCR
	Example 0
	System layout
	Sequence diagram

	Example 1
	System layout
	Sequence diagram

	Example 2
	System layout
	Sequence diagram

	Example 3
	System layout
	Sequence diagram

	Example 4 (Hypothetical)
	System layout
	Sequence diagram


	CORS with Secure Cookies
	Making CORS Requests from Your Web Application
	Using Pure Javascript
	Using jQuery
	Passing Secure Data from Your Web Application to PCR

	Handling CORS Requests Made to Your Connector's Endpoint
	Using PCR Global CORS Settings
	Using JAX-RS Annotations
	Explicitly Setting CORS Headers
	Configuring or Overriding CORS in Either Situation
	Setting Browser Cookies from Your Endpoint

	Appendix: CORS Configuration for Web Servers
	Configuring CORS in Tomcat
	Other Web Servers


	Frequently Asked Questions
	Q. I am attempting to use packages in the pif.test_utils bundle, and am seein...
	Q. I am encountering Java.lang.NoClassDefFoundError or java.lang.ClassNotFoun...


