
Perceptive Intelligent Capture
with Supervised Learning

Scripting Reference Guide

Version 5.5 SP1
November 2012

Prepared by:
Perceptive Engineering

Copyright © 1991-2012 by Perceptive Software, Inc. All rights reserved.

Trademarks

Perceptive Software, Inc., and its logos are trademarks of Perceptive Software, Inc.

CaptureNow, ImageNow, Interact, and WebNow are trademarks of Lexmark
International Technology SA, registered in the U.S. and other countries. Perceptive
Software is a stand-alone business unit within Lexmark International Technology SA. All
other brands and product names mentioned in this document are trademarks or
registered trademarks of their respective owners. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or any other media embodiments now
known or hereafter to become known, without the prior written permission of Perceptive
Software.

Additional trademarks include Imaging Technology provided under License by AccuSoft
Corporation. ImageGear © 1996-2006. All Rights Reserved. Outside In® Viewer
Technology © 1991, 2007 Oracle. ImageStream Graphics Filter, Copyright © 1991-2006
by Inso Corporation. Adobe PDF Library is used for opening and processing PDF files:
© 1984-2008 Adobe Systems Incorporated and its licensors. All rights reserved,
Adobe®, the Adobe logo, Acrobat®, the Adobe PDF logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries. All other trademarks are the property of their respective owners.
FineReader 8.1, FineReader 10 Copyright © 1993-2011 ABBYY (BIT Software), Russia.
Cleqs Barcode Engine, Copyright © 1999 Gentriqs Software GmbH, All rights reserved.
Kadmos Engine, © Copyright 1999 re Recognition Technology GmbH. FindLink,
Copyright © connex software GmbH, Lotus Notes copyright © IBM Corporation 2002,
SAP-FI copyright © 2001 SAP AG, Microsoft Exchange copyright © Microsoft
Corporation. Working with JPEG image format: This software is based in part on the
work of the Independent JPEG Group. Unicode support: Copyright© 1991-2009,
Unicode, Inc. All rights reserved. Intel® Performance Primitives, Copyright © 2002-2008
Intel Corporation. This product uses WinWrap Basic 9.0 ©, Copyright 1993-2007 Polar
Engineering and Consulting, http://www.winwrap.com/. FreeType, Copyright © 1996-
2002, 2006 The FreeType Project (www.freetype.org). All rights reserved. QS
QualitySoft GmbH, Copyright © 2003-2010. DjVu image format: Portions of this
computer program are Copyright © 1996-2007 LizardTech, Inc. All rights reserved.

Product names mentioned herein are for identification purposes only, and may be
trademarks and/or registered trademarks of their respective companies.

Warranties The customer acknowledges that:

Perceptive Software, Inc. has given no assurance, nor made any representations or
warranties of any kind with respect to the product, the results of its use, or otherwise.

Perceptive Software, Inc. makes no warranty regarding the applicable software
package, its merchantability or fitness for a particular purpose; and all other warranties,
express or implied, are excluded.

Software License Notice Your license agreement with Perceptive specifies the permitted and prohibited uses of
the product. Any unauthorized duplication or use of the Perceptive software in whole, or
in part, in print, or in any other storage and retrieval system, is forbidden.

Document
Number

Pcv-Scr-5.5SP1

Version 5.5 SP1

November 2012

Perceptive Software, Inc.

Scripting Reference Guide Contents

Perceptive Intelligent Capture Page 3 of 207

Contents
CHAPTER 1 SCRIPT EVENT REFERENCE ... 6
1.1 Description - VerifierFormLoadEvent .. 6

1.1.1. Usage ...8
1.2 ScriptModule ... 8

1.2.1. Methods and Properties ...9
1.3 Document ... 31

1.3.1. FocusChanged .. 31
1.3.2. OnAction.. 33
1.3.3. PostExtract .. 33
1.3.4. PreExtract.. 34
1.3.5. PreVerifierTrain ... 34
1.3.6. Validate ... 35
1.3.7. VerifierTrain ... 35

1.4 <Fieldn> (Cedar FieldDef Event Interface) .. 36
1.4.1. CellChecked .. 36
1.4.2. CellFocusChanged .. 37
1.4.3. Format ... 38
1.4.4. FormatForExport ... 39
1.4.5. PostAnalysis .. 39
1.4.6. PostEvaluate ... 40
1.4.7. PreExtract.. 40
1.4.8. SmartIndex .. 41
1.4.9. TableHeaderClicked .. 41
1.4.10. Validate ... 42
1.4.11. ValidateCell ... 43
1.4.12. ValidateRow .. 44
1.4.13. ValidateTable .. 44

CHAPTER 2 WORKDOC OBJECT REFERENCE (SCBCDRWORKDOCLIB) 46
2.1 SCBCdrWorkdoc .. 46

2.1.1. Description .. 46
2.1.2. Type Definitions .. 46
2.1.3. Methods and Properties .. 50

2.2 SCBCdrFields ... 74
2.2.1. Description .. 74
2.2.2. Methods and Properties .. 74

2.3 SCBCdrField ... 77
2.3.1. Description .. 77
2.3.2. Type Definitions .. 77
2.3.3. Methods and Properties .. 78

2.4 SCBCdrCandidate .. 90
2.4.1. Description .. 90
2.4.2. Methods and Properties .. 90

2.5 SCBCdrTable ... 95
2.5.1. Descriptions .. 95
2.5.2. Type Definitions .. 95
2.5.3. Methods and Properties .. 96

2.6 SCBCdrTextblock ... 116
2.6.1. Description .. 116
2.6.2. Methods and properties .. 116

2.7 SCBCdrWord .. 118
2.7.1. Description .. 118
2.7.2. Methods and Properties .. 118

2.8 SCBCdrDocPage .. 119
2.8.1. Description .. 119

Scripting Reference Guide Contents

Perceptive Intelligent Capture Page 4 of 207

2.8.2. Type Definitions .. 119
2.8.3. Methods and Properties .. 120

2.9 SCBCdrFolder .. 123
2.9.1. Description .. 123
2.9.2. Methods and Properties .. 123

CHAPTER 3 CEDAR PROJECT OBJECT REFERENCE (SCBCDRPROJLIB) 126
3.1 Description .. 126
3.2 Type Definitions .. 126

3.2.1. Methods and Properties .. 135
3.3 SCBCdrDocClasses.. 144

3.3.1. Description .. 144
3.3.2. Methods and Properties .. 144

3.4 SCBCdrDocClass ... 147
3.4.1. Description .. 147
3.4.2. Type Definitions .. 147
3.4.3. Methods and Properties .. 148

3.5 SCBCdrFieldDefs ... 155
3.5.1. Description .. 155
3.5.2. Methods and Properties .. 155

3.6 SCBCdrFieldDef ... 157
3.6.1. Description .. 157
3.6.2. Type Definitions .. 157
3.6.3. Methods and Properties .. 158

3.7 SCBCdrSettings .. 163
3.7.1. Description .. 163
3.7.2. Methods and Properties .. 164

3.8 SCBCdrScriptModule .. 167
3.8.1. Description .. 167
3.8.2. Methods and Properties .. 167

3.9 SCBCdrScriptProject .. 168
3.9.1. Description .. 168
3.9.2. Methods and Properties .. 168

3.10 SCBCdrScriptAccess .. 170
3.10.1. Description .. 170
3.10.2. Methods and Properties .. 170

CHAPTER 4 (CDRADSLIB) .. 173
4.1 SCBCdrSupExSettings ... 173

4.1.1. Description .. 173
4.1.2. Methods and Properties .. 173

CHAPTER 5 ANALYSIS ENGINES OBJECT REFERENCE ... 175
5.1 SCBCdrAssociativeDbExtractionSettings .. 175

5.1.1. Description .. 175
5.1.2. Type Definitions .. 175
5.1.3. Method and Properties .. 175

CHAPTER 6 STRINGCOMP OBJECT REFERENCE (SCBCDRSTRCOMPLIB) 184
6.1 SCBCdrStringComp .. 184

6.1.1. Description .. 184
6.1.2. Type Definitions .. 184
6.1.3. Methods and Properties .. 184

6.2 SCBCdrEmailProperties ... 186
6.2.1. Description .. 186
6.2.2. Properties .. 186

6.3 SCBCdrLicenseInfoAccess ... 187
6.3.1. Description .. 187

Scripting Reference Guide Contents

Perceptive Intelligent Capture Page 5 of 207

6.3.2. Methods... 187
CHAPTER 7 CEDAR VERIFIER COMPONENT LIBRARY ... 191
7.1 SCBCdrVerificationForm ... 191

7.1.1. Description .. 191
7.1.2. Methods and Properties .. 191

7.2 SCBCdrVerificationField ... 192
7.2.1. Description .. 192
7.2.2. Type Definitions .. 192
7.2.3. Methods and Properties .. 193

7.3 SCBCdrVerificationTable .. 199
7.3.1. Description .. 199
7.3.2. Methods and Properties .. 199

7.4 SCBCdrVerificationButton ... 200
7.4.1. Description .. 200
7.4.2. Methods and Properties .. 200

7.5 SCBCdrVerificationLabel .. 200
7.5.1. Description .. 200
7.5.2. Properties .. 200

CHAPTER 8 PASSWORD ENCRYPTION FOR DATABASE CONNECTION STRINGS
 ... 205

8.1 Master Project Side (Project Primary Developer) 205

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 6 of 207

Chapter 1 Script Event Reference

1.1 Description - VerifierFormLoadEvent
In order to implement the script handler of this event, start the Perceptive Intelligent
Capture Designer application, load the desired project file, select the project node in
Definition mode, open the Script Editor, select the “Script Module” object and click on the
new “VerifierFormLoad” item in “Proc” drop down list:

For example, the following simple implementation of the “VerifierFormLoad” event is going
to (in this simple case non-optionally) replace the standard form “Form_Invoices_1” with a
custom one “Form_Invoices_2” defined for the same document class:

Option Explicit

'Project Level Script Code

Private Sub ScriptModule_VerifierFormLoad(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, FormClassName As String, FormName As String)

 FormClassName = "Invoices"
 FormName = "Form_Invoices_2"
End Sub

As a result, Verifier application will always load the simple second form, specified in the
script:

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 7 of 207

In case the script modifies the form and form’s class references incorrectly (for example,
referring to a non-existing verification form of a class, or in case the form does not exist in
the specified class, and so on), a warning message is displayed to the Verifier user.

For example, in case of the wrong script like this:

Private Sub ScriptModule_VerifierFormLoad(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, FormClassName As String, FormName As String)

 FormClassName = "Non-existing class name"
 FormName = "Non-existing form name"

End Sub

The Verifier application is going to show the following warning message:

Then the application loads the standard verification form (i.e., the one that the application
would be loading anyway if the script handler of “VerifierFormLoad” event did not exist)
instead of the wrong one proposed by the custom script:

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 8 of 207

Note: the new event is fired from within the Perceptive Intelligent Capture Verifier
application only and cannot be tested in Perceptive Intelligent Capture Designer
application.

As another relevant extension, the former document class level “FocusChanged” event has
been extended with a new “Reason” called “CdrBeforeFormLoaded”. The event is now also
fired right before the desired verification form is about to be loaded but after the
“VerifierFormLoad” event described above.

Below is a script sample that shows how the handler of this extended reason can be
implemented in the Perceptive Intelligent Capture custom script:

Private Sub Document_FocusChanged(pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc, ByVal
Reason As SCBCdrPROJLib.CdrFocusChangeReason, ByVal OldFieldIndex As Long,
pNewFieldIndex As Long)

 If Reason = CdrBeforeFormLoaded Then
 MsgBox "The form has not been loaded yet"
 End If

End Sub

1.1.1. Usage
The features described in the present section can be used for many different purposes, for
example:

• To optionally load non-standard verification form(s) in accordance with
some parameters of the processed document.

• To dynamically translate the content of verification form into, e.g., a
different language or simply load the required verification form in
accordance with the current system Regional settings.

• To display a specific page of a document instead of the first one.

1.2 ScriptModule
Cedar ScriptModule Event Interface

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 9 of 207

Project events are specific for one Perceptive Intelligent Capture Project, but within a
Perceptive Intelligent Capture Project, all documents and fields share the same
implementation of these events. This means that they are document class (DocClass)
independent. As the Project events belong to the “sheet” ScriptModule, all events start with
the prefix ScriptModule.

1.2.1. Methods and Properties

1.2.1.1. AppendWorkdoc

AppendWorkdoc

Description Appends a given Workdoc after last Workdoc on the base of
CdrMPType.

Syntax ScriptModule_AppendWorkdoc (pLastWorkdoc As
ISCBCdrWorkdoc, pCurrentWorkdoc As ISCBCdrWorkdoc,
pAppendType As CdrMPType)

Parameters pLastWorkdoc: Last Workdoc

 pCurrentWorkdoc: Current Workdoc

 pAppendType: An enumeration type based on the definition
of the relationship of the Last and Current
Workdoc. In other words, whether the current
Workdoc is to be treated as a new document
or appended to the last Workdoc. The user
can change this parameter using script to
influence the decision.

1.2.1.2. BatchClose

BatchClose

Description This event is launched when the verifier user exits a batch in one of
the following methods:

• When verifying a batch and selecting, Return to batch list

• Batch Verification Completion

• Partial Batch verification completion

• The user quits the verifier applications whilst in a batch.

The event is triggered in the Verifier Thick Client and the Web
Verifier applications.

Syntax
 ScriptModule_BatchClose(ByVal UserName As String, ByVal
BatchDatabaseID As Long, ByVal ExternalGroupID As Long,
ByVal ExternalBatchID As String, ByVal TransactionID As
Long, ByVal WorkflowType As
SCBCdrPROJLib.CDRDatabaseWorkflowTypes, BatchState As
Long, BatchReleaseAction As
SCBCdrPROJLib.CDRBatchReleaseAction)

Parameters UserName: The Username currently logged in who has

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 10 of 207

closed the batch.

 BatchDatabaseID: The unique Batch ID within the database.
For the File System, this batch ID is not
used.

 ExternalGroupID: The Group ID which can be assigned to a
batch.

The Group ID can be used with the new
Scripting security methods which enable
the developer to assign a batch a security
group. Only those users belonging to the
same Group ID will be able to access
batches.

For example, a batch belonging to Group ID
80 will only be accessible by a user who is
assigned to group 80.

Read or Write Parameter which can be
modified to any long value.

 ExternalBatchID: The External Batch ID can be assigned to a
batch.

The External Batch ID allows the developer
to synchronize a newly created batch of
documents with another external system.
For example, and archiver, a storage box
ID, etc.

Read or Write Parameter which can be
modified to any long value.

 TransactionID: The Transaction ID can be assigned to a
batch.

The Transaction ID allows the developer to
synchronize a newly created batch of
documents with another external system.
For example, and archiver, a storage box
ID, etc.

Read or Write Parameter which can be
modified to any long value.

 WorkflowType: Corresponds to
CDRDatabaseWorkflowTypes data type.

 BatchState: The current status of the batch being
opened, eg status 550 (Extraction
Verification).

 BatchReleaseAction: Batch Release Action represents the action
taken when the last document of the batch
has been verified. The parameter can be
set, or read from script. By default, it is
always set to
CDRBatchReleaseActionUserDefined (as
user always makes a selection). If registry

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 11 of 207

value is used to hide batch release dialog
box in Verifier thick client, then the last
action taken prior to dialog being hidden,
will be the one showing in this parameter.

The scripter can set an override value to
this parameter, eg, every time batch
verification completes, always goes to next
invalid batch.

Cancel – means returns to current batch
and last document verified

Return To List – return to batch list

Undefined – unknown

Action User Defined – default, user makes a
selection on next action to take on batch
release

VerifyNextInvalidBatch – open next batch to
verify

VerifyNextInvalidState – open current batch
to verify in the next invalid state

See Also BatchOpen, Project Event, PostImportBatch,

CDRDatabaseWorkflowTypes

Example Example

Private Sub ScriptModule_BatchClose(ByVal UserName As String, ByVal
BatchDatabaseID As Long, ByVal ExternalGroupID As Long, ByVal
ExternalBatchID As String, ByVal TransactionID As Long, ByVal
WorkflowType As SCBCdrPROJLib.CDRDatabaseWorkflowTypes, BatchState As
Long, BatchReleaseAction As SCBCdrPROJLib.CDRBatchReleaseAction)

Call LogMessage(BatchDatabaseID & "," & UserName, "C:\EventTrace_" &
Format(Now,"DDMMYYYY") & ".Log")

End Sub

1.2.1.3. BatchOpen

BatchOpen

Description An event that is triggered when the user opens a batch.

Syntax
 ScriptModule_BatchOpen(ByVal UserName As String, ByVal
BatchDatabaseID As Long, ByVal ExternalGroupID As Long,
ByVal ExternalBatchID As String, ByVal TransactionID As
Long, ByVal WorkflowType As
SCBCdrPROJLib.CDRDatabaseWorkflowTypes, BatchState As

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 12 of 207

Long)

Parameters UserName: The Username currently logged in who has
opened the batch.

 BatchDatabaseID: The unique Batch ID within the database.
For the File System, this batch ID is not
used.

The Batch ID will be in the form of a numeric
value, eg for Batch 00000061, the value 61
will be returned.

 ExternalGroupID: The Group ID which can be assigned to a
batch.

The Group ID can be used with the new
Scripting security methods which enable the
developer to assign a batch a security group.
Only those users belonging to the same
Group ID will be able to access batches.

For example, a batch belonging to Group ID
80 will only be accessible by a user who is
assigned to group 80.

Read or Write Parameter which can be
modified to any longvalue.

 ExternalBatchID: The External Batch ID can be assigned to a
batch.

The External Batch ID allows the developer
to synchronize a newly created batch of
documents with another external system. For
example, an archive ID, a storage box ID,
etc.

Read or Write Parameter which can be
modified to any long value.

 TransactionID: The Transaction ID can be assigned to a
batch.

The Transaction ID allows the developer to
synchronize a newly created batch of
documents with another external system. For
example, an archive ID, a storage box ID etc.

Read or Write Parameter which can be
modified to any longvalue.

 WorkflowType: Corresponds to
CDRDatabaseWorkflowTypes data type.

 BatchState: The current status of the batch being
opened, eg status 550 (Extraction
Verification).

See Also BatchClose, Project Event, PostImportBatch,
CDRDatabaseWorkflowTypes

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 13 of 207

Example Example below logs the Batch ID and User name that Opened a
batch, with date/time.
LogMessage is a custom function writes a text line into a log file with
Date/Time as a prefix.
Private Sub ScriptModule_BatchOpen(ByVal UserName As String, ByVal
BatchDatabaseID As Long, ByVal ExternalGroupID As Long, ByVal
ExternalBatchID As String, ByVal TransactionID As Long, ByVal
WorkflowType As SCBCdrPROJLib.CDRDatabaseWorkflowTypes, BatchState As
Long)

 Call LogMessage(BatchDatabaseID & "," & UserName, "C:\EventTrace_"
& Format(Now,"DDMMYYYY") & ".Log")

End Sub

1.2.1.4. ExportDocument

ExportDocument

Description Provides the ability to implement a customer specific export of all
extracted data.

Syntax ScriptModule_ExportDocument (pWorkdoc As
ISCBCdrWorkdoc, ExportPath As String, pCancel As
Boolean)

Parameters pWorkdoc: Workdoc, which should be exported

 ExportPath: Export path, which was configured within the
Runtime Server settings (no changes possible)

 pCancel: Set this variable to TRUE to cancel the export

Example

Private Sub ScriptModule_ExportDocument(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, ByVal ExportPath As String, pCancel As
Boolean)

End Sub

1.2.1.5. ForceClassificationReview

ForceClassificationReview

Description In the application, the PostClassify event has been extended so that
it can force a manual classification review even if the classification
succeeded.

Attribute Read/Write

See also PostClassify

Example The script sample below shows how the manual classification
process can be forced from custom script event “PostClassify”.

Private Sub ScriptModule_PostClassify(pWorkdoc As

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 14 of 207

SCBCdrPROJLib.SCBCdrWorkdoc)

 If pWorkdoc.DocClassName = "VeryImportantClass" Then
pWorkdoc.ForceClassificationReview = True End If

End Sub

1.2.1.6. Initialize

Initialize

Description The Initialize event is called when a batch is opened for processing.

Syntax ScriptModule_Initialize (ModuleName As String)

Parameters ModuleName: Name of the current module, allowed values:
''Server'', ''Designer'', ''Verifier'', Thin Client
Verifier

Example

Public Sub ScriptModule_Initialize(ByVal ModuleName As String)

DBname=Project.Filename

DBname=Left(DBname,InStrRev(DBname,''\'')) & ''InvoiceBestellNo.mdb''

Set DB=OpenDatabase(DBname)

End Sub

1.2.1.7. MoveDocument

MoveDocument

Description This event is launched when the Verifier / Web Verifier User
places a document in Exception, and the document is moved out
of the batch.

The ScriptModule logs following event information: Old Batch ID,
New Batch ID, Reason, Document state. For the event to be
triggered, the condition must be set within the application
settings that a new exception batch is created when a user
places a document to exception.

The event will be triggered for each document that is placed into
exception within a single batch.

After placing a document to Exception, the event will be
triggered if:

• Batch Verification is completed and all other documents
have been verified or placed in exception.

• The user returns to the batch list after placing the
document into Exception.

Syntax ScriptModule_MoveDocument(

pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc,

ByVal OldBatchID As String,

ByVal NewBatchID As String,

ByVal Reason As SCBCdrPROJLib.CDRMoveDocumentReason)

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 15 of 207

Parameters pWorkdoc: The Workdoc Object that is being used. No
changes can be made to the workdoc within this
event.

 OldBatchID: The batch ID to which the document belonged
prior to placing a document to exception.

 NewBatchID: The new batch ID to which the document is
moving after the document is placed in
Exception.

 Reason: The reason the event is triggered. Thus far, the
only reason implemented is for the document
moved to exception – this is a value of 1.

 DocState: The workflow state of the document

See Also Project Event

Example The example below logs a general message for each document
placed into exception, showing the old batch ID and the new
batch ID.
Private Sub ScriptModule_MoveDocument(pWorkdoc As

SCBCdrPROJLib.SCBCdrWorkdoc, ByVal OldBatchID As
String, ByVal NewBatchID As String, ByVal Reason As
SCBCdrPROJLib.CDRMoveDocumentReason)

 If Reason = CDRMoveDocumentToExceptionBatch Then

 Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, " Document [" & pWorkdoc.Filename &
"] has been moved from Verifier batch [" & OldBatchID & "] to
exception batch [" & NewBatchID & "]"

 Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, " Current document state is [" &
CStr(pWorkdoc.CurrentBatchState) & "]"

 End If

End Sub

1.2.1.8. PostClassify

PostClassify

Description The PostClassify event will be called after all defined classification
methods have been executed by the Cedar Project.

Syntax ScriptModule_PostClassify (pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc)

Parameters pWorkdoc: Workdoc object which has been classified

See also ForceClassificationReview

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 16 of 207

Example Private Sub ScriptModule_PostClassify(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc)

Dim imgDocument As SCBCroImage

Dim lngTagCount As Long

'Imprint number is stored as a Tifftag in the image file - the
following code extracts the Tifftag

'information and sets the field value.

'NOTE: this will only work if there is a single Tifftag - would
require modification for more!

Set imgDocument = pWorkdoc.Image(0)

lngTagCount = imgDocument.TiffTagCount

'Check that there is at least 1 tifftag.

If (lngTagCount > 0) Then

Dim intImageCount As Integer

Dim intImageCounter As Integer

intImageCount=pWorkdoc.PageCount'Get the number of pages in TIF

Dim imgCollection() As SCBCroImage

ReDim imgCollection(intImageCount) 'Set an image collection
variable to store all the pages of the image

'Store all pages of TIF image onto a temporary image collection array

For intImageCounter=0 To intImageCount-1

Set imgCollection(intImageCounter)=pWorkdoc.Image(intImageCounter)

Next

Dim strTag As String

strTag = CStr(Format(Now(), "yyyymmddhhMMss")) & "123456" 'Set the
Info to place into TIF Tag

imgCollection(0).TiffTagClearAll 'Clear All TIF Tags

imgCollection(0).TiffTagAddASCII 33601, strTag 'Add the TIF Tag

imgCollection(0).SaveFile(pWorkdoc.DocFileName(0)) 'Save modified
image collection with TIF Tag and overwrite existing image

'Reset the collection to the new image in workdoc

For intImageCounter=1 To intImageCount-1

imgCollection(intImageCounter).AppendToMultiImageFile(pWorkdoc.DocFil
eName(0))

Next

MsgBox("Tag = " & imgDocument.TiffTagString(lngTagCount)) 'Message
box to show TIF Tag

Else

' If there is no Tifftag, can set the field to false - no Tifftag
means that something

' has gone wrong with scanning. Generate a new Doc ID.

MsgBox("No Tag")

End If

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 17 of 207

End Sub

Example:
Private Sub ScriptModule_PostClassify(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc)
Dim imgDocument As SCBCroImage
Dim lngTagID as long
lngTagID = 12345

Set imgDocument = pWorkdoc.Image(0)

Call fnCreateTiffTag(imgDocument, kngTagID, “Test”)
End Sub

1.2.1.9. PostImportBatch

PostImportBatch

Description An event that is triggered when the Runtime Server is configured to
run with security update.

Only one Runtime Server instance should be configured to update
system security. The frequency of the security update is determined
via the Runtime Server instance properties.

Syntax
 ScriptModule_PostImportBatch(ByVal BatchDatabaseID As
Long, BatchName As String, Priority As Long, State As
Long, ExternalGroupID As Long, ExternalBatchID As
String, TransactionID As Long, TransactionType As Long)

Parameters BatchDatabaseID: The unique Batch ID from the database. This
would be a numeric ID corresponding to the
BatchID within the database tables. Read
Only Parameter which cannot be modified.

 BatchName: The Batch Name which is assigned by the
Runtime Server instance. The name is taken
from the Import settings of the Runtime
Server instance.

Read or Write Parameter which can be
modified to any string value.

 Priority: The Batch priority which is assigned by the
Runtime Server instance. The priority is
taken from the Import settings of the Runtime
Server instance.

Read or Write Parameter which can be
modified to any long value between 1 to 9.

 State: The Batch State which is assigned by the
Runtime Server instance. The status is taken
from the Workflow settings of the Runtime
Server instance – Import Success.

Read or Write Parameter which can be

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 18 of 207

modified to any long value between 100 and
999.

 ExternalGroupID: The Group ID which can be assigned to a
batch.

The Group ID can be used with the new
Scripting security methods which enable the
developer to assign a batch a security group.
Only those users belonging to the same
Group ID will be able to access batches.

For example, a batch belonging to Group ID
80 will only be accessible by a user who is
assigned to group 80.

Read or Write Parameter which can be
modified to any numeric value.

 ExternalBatchID: The External Batch ID can be assigned to a
batch.

The External Batch ID allows the developer
to synchronize a newly created batch of
documents with another external system. For
example, and archiver, a storage box ID etc.

Read or Write Parameter which can be
modified to any numeric value.

 TransactionID: The Transaction ID can be assigned to a
batch.

The Transaction ID allows the developer to
synchronize a newly created batch of
documents with another external system. For
example, an archive ID, a storage box ID etc.

Read or Write Parameter which can be
modified to any long value.

 TransactionType: The Transaction Type can be assigned to a
batch.

The Transaction Type allows the developer
to synchronize a newly created batch of
documents with another external system. For
example, an archiveID, a storage box ID etc.

Read or Write Parameter which can be
modified to any long value.

See Also ScriptModule Events, SecurityUpdateStart,
SecurityUpdateAddUserGroup, SecurityUpdateCommit

Example The example below updates the database user security on a regular
basis. The script can be updated to lookup users/roles and update
the Perceptive Intelligent Capture user table.

Private Sub ScriptModule_PostImportBatch(ByVal BatchDatabaseID As
Long, BatchName As String, Priority As Long, State As Long,
ExternalGroupID As Long, ExternalBatchID As String, TransactionID As

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 19 of 207

Long, TransactionType As Long)

 ‘Set batch priorities after import
 BatchName = "AP Batch_" & CStr(BatchDatabaseID)
 Priority = 2
 State = 102
 ExternalGroupID = 777
 TransactionType = 10
 TransactionID = 2

End Sub

1.2.1.10. PreClassify

PreClassify

Description The PreClassify event will be called before any defined classification
method is executed by the Cedar Project. During this event it is
possible to apply an existing name of a DocClass to the WorkDoc.

Syntax ScriptModule_PreClassify (pWorkdoc As SCBCdrWorkdoc)

Parameters pWorkdoc: Workdoc object, which should be classified

Example

Private Sub ScriptModule_PreClassify(pWorkdoc As SCBCdrWorkdoc)

if (DoSomeMagic(pWorkdoc) = TRUE) then

'assign “Invoice” as result of the classification

pWorkdoc.DocClassName = ''Invoice''

else

'do nothing and continue with normal classification

end if

End Sub

1.2.1.11. PreClassifyAnalysis

PreClassifyAnalysis

Description The PreClassifyAnalysis event is fired between the PreClassify and
PostClassify events which identify the beginning and end of the
classification workflow step for a particular document. Using this new
event the custom script can clean-up and/or extend classification
results before the final decision has been made by the system and
before the final classification matrix has been built. The event
handler can be implemented for the project level script page.

1.2.1.12. ProcessBatch

ProcessBatch

Description This event is introduced to work with the new custom workflow step
within the Runtime Server instance. The ProcessBatch event is
launched when the RTS instance begins processing batches

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 20 of 207

matching the input state criteria.

Syntax ScriptModule_ProcessBatch(pBatch As
SCBCdrPROJLib.ISCBCdrBatch, ByVal InputState As Long,
DesiredOutputStateSucceeded As Long,
DesiredOutputStateFailed As Long)

Parameters pBatch: The Batch Object that is being processed.

 InputState: The input state of the batch when Custom Processing
was activated on it.

 DesiredOut
putStateSu
cceeded:

The output state of the batch if the workflow step
succeeds.

 DesiredOut
putStateFai
led:

The output state of the batch if the workflow step
failed.

See also Project Event

Example Example:
Private Sub ScriptModule_ProcessBatch(pBatch As
SCBCdrPROJLib.ISCBCdrBatch, ByVal InputState As Long,
DesiredOutputStateSucceeded As Long, DesiredOutputStateFailed As
Long)
 Call LogError(" ProcessBatch Event was launched", "C:\EventTrace_"
& Format(Now,"DDMMYYYY") & ".Log")
End Sub

The below script should be added to the very beginning of the
ProcessBatch event: This script helps to stop a indefinite looping
process of state 0 batches.

This script does not set batches to special state 987. The script
repairs a batch and stops looping of the custom processing step.
Note that it is not possible to set the batch state to something other
than zero for a batch with no documents, because batch state is by
definition the lowest state of all enclosed documents. If the number
of documents is zero, the application just uses the default value -
which is zero.

Enhanced recovery script sample:

Private Sub ScriptModule_ProcessBatch(pBatch As SCBCdrPROJLib.ISCBCdrBatch,
ByVal InputState As Long, DesiredOutputStateSucceeded As Long,
DesiredOutputStateFailed As Long)

Dim lFolderIndex As Long
Dim lDocIndex As Long
Dim theWorkdoc As SCBCdrWorkdoc
Dim vLoadingCompletenessStatus As Variant
Dim lStatus As Long
Dim bNeedSafetyRestart As Boolean
Dim strWorkdocName As String
Dim theImage As SCBCroImage

On Error GoTo LABEL_ERROR

pBatch.BatchPriority = 3 ‘[AE] [2012-03-27] Boost priority for state zero
documents

Project.LogScriptMessageEx CDRTypeInfo, CDRSeveritySystemMonitoring,
"ScriptModule_ProcessBatch starting, batch <" & CStr(pBatch.BatchID) & ">, new
state <" & CStr(DesiredOutputStateSucceeded) & ">"

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 21 of 207

If ScriptModule.ModuleName <> "Server" Then Exit Sub

For lFolderIndex = pBatch.FolderCount – 1 To 0 Step -1
If pBatch.FolderDocCount (lFolderIndex) = 0 Then

Project.LogScriptMessageEx CDRTypeWarning, CDRSeveritySystemMonitoring,
"Removed folder with zero documents from batch [" & pBatch.BatchID & "]"

pBatch.DeleteFolder(lFolderIndex, False)
End If
Next lFolderIndex

If pBatch.FolderCount = 0 Then

Project.LogScriptMessageEx CDRTypeWarning, CDRSeveritySystemMonitoring,
"Detected batch with zero folders: [" & pBatch.BatchID & "]"
pBatch.BatchState = 987

End If

On Error Resume Next

For lFolderIndex = 0 To pBatch.FolderCount-1 Step 1
For lDocIndex = pBatch.FolderDocCount(lFolderIndex) - 1 To 0 Step -1

If pBatch.FolderDocState(lFolderIndex, lDocIndex) = InputState Then
Err.Clear
bNeedSafetyRestart = False
strWorkdocName = pBatch.FolderWorkdocFileName (lFolderIndex, lDocIndex, False)
Set theWorkdoc = pBatch.LoadWorkdoc(lFolderIndex, lDocIndex)
Project.LogScriptMessageEx CDRTypeInfo, CDRSeveritySystemMonitoring, "Loading of
zero state Workdoc [" & strWorkdocName & "] proceeded with error number [" &
CStr(Err.Number) & "] and error description [" & Err.Description & "]"

lStatus = 1001
If Err.Number = 0 Then

vLoadingCompletenessStatus =
theWorkdoc.NamedProperty("LoadingCompletenessStatus")
lStatus = vLoadingCompletenessStatus

End If

If Err.Number <> 0 Or lStatus > 0 Then

bNeedSafetyRestart = True
Project.LogScriptMessageEx CDRTypeWarning,
CDRSeverityEmailNotification, “True corruption case detected for
Workdoc [“ & strWorkdocName & “] with stream exit code [“ & CStr
(lStatus) & “]”

End If

Project.LogScriptMessageEx CDRTypeInfo, CDRSeveritySystemMonitoring,
"PreErrorChecks: Loading return code is {" & CStr(Err.Number) & "} and loading
status is {" & CStr(lStatus) & "}"

If (lStatus > 0 And lStatus <= 700) Then ' if this value is > 700 but <= 790,
then re-OCR is required, if it is greater than 790, then re-importing is needed
- extend the script below to set a different output state, other than the
standard "DesiredOutputStateSucceeded" one

Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, "Loading return code is {" &
CStr(Err.Number) & "} and loading status is {" & CStr(lStatus) &
"}"
Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, "Ignoring internal error when loading
Workdoc [" & theWorkdoc.Filename & "]"
Err.Clear

theWorkdoc.DocClassName = “”
theWorkdoc.Fields.Clear
theWorkdoc.RebuildBasicObjects

If Err.Number <> 0 Then
Project.LogScriptMessageEx CDRTypeWarning,
CDRSeveritySystemMonitoring, "Recovery script:
RebuildBasicObjects failed with error code [" &
CStr(Err.Number) & "] and error description [" &
Err.Description & "]"
Err.Clear
Project.LogScriptMessageEx CDRTypeWarning,
CDRSeveritySystemMonitoring, "Recovery script: Proceeding with
attempt to redirecting document to re-OCR state" ' [AE] [2012-
02-27]
DesiredOutputStateSucceeded = 100 ' [AE] [2012-02-27]
theWorkdoc.DocState = CDRDocStateHaveDocs ' [AE] [2012-02-28]
This call internally triggeres invoking of
".InternalClear(false,true)

End If

pBatch.FolderDocState(lFolderIndex, lDocIndex) =
DesiredOutputStateSucceeded

If Err.Number <> 0 Then

Project.LogScriptMessageEx CDRTypeError,
CDRSeveritySystemMonitoring, "Recovery script:

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 22 of 207

put_FolderDocState failed with error code [" & CStr(Err.Number)
& "] and error description [" & Err.Description & "]"
Err.Clear

End If

pBatch.UpdateDocument(theWorkdoc, lFolderIndex, lDocIndex)
If Err.Number <> 0 Then

Project.LogScriptMessageEx CDRTypeError,
CDRSeveritySystemMonitoring, "Recovery script: UpdateDocument
failed with error code [" & CStr(Err.Number) & "] and error
description [" & Err.Description & "]"
Err.Clear

End If

End If

If Err.Number <> 0 Or (lStatus > 700 And lStatus <= 790) Then ' if this value is
> 700 but <= 790, then re-OCR is required, if it is greater than 790, then re-
importing is needed - extend the script below to set a different output state,
other than the standard "DesiredOutputStateSucceeded" one

Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, "Loading return code is {" &
CStr(Err.Number) & "} and loading status is {" & CStr(lStatus) &
"}"
Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, "Ignoring internal error when loading
Workdoc [" & theWorkdoc.Filename & "]"
Err.Clear

DesiredOutputStateSucceeded = 100
theWorkdoc.DocState = CDRDocStateHaveDocs ' [AE] [2012-02-28] This
call internally triggeres invoking of ".InternalClear(false,true)
pBatch.FolderDocState(lFolderIndex, lDocIndex) =
DesiredOutputStateSucceeded
If Err.Number <> 0 Then

Project.LogScriptMessageEx CDRTypeError,
CDRSeveritySystemMonitoring, "Recovery script:
put_FolderDocState failed with error code [" & CStr(Err.Number)
& "] and error description [" & Err.Description & "]"
Err.Clear

End If

pBatch.UpdateDocument(theWorkdoc, lFolderIndex, lDocIndex)
If Err.Number <> 0 Then

Project.LogScriptMessageEx CDRTypeError,
CDRSeveritySystemMonitoring, "Recovery script: UpdateDocument
failed with error code [" & CStr(Err.Number) & "] and error
description [" & Err.Description & "]"
Err.Clear

End If

End If

' [AE] [2012-03-05] Test that recovery has been succeeded and the
Workdoc can now be loaded with no issues. This is one extra safety
solution: "Load document one more time to "test" and recover for
(from) real document file corruptions".
If lStatus > 0 And lStatus <= 790 Then
Set theWorkdoc = Nothing
Err.Clear
Set theWorkdoc = pBatch.LoadWorkdoc(lFolderIndex, lDocIndex)
vLoadingCompletenessStatus =
theWorkdoc.NamedProperty("LoadingCompletenessStatus")
lStatus = vLoadingCompletenessStatus
If Err.Number <> 0 Or lStatus > 0 Then

lStatus = 799
End If

End If

' [AE] [2012-03-27] Additional check for consistency of loaded
document files

If lStatus = 0 Then
Err.Clear
Set theImage = theWorkdoc.Pages(0).Image(0)
If Err.Number <> 0 Or theImage Is Nothing Then

lStatus = 999
bNeedSafetyRestart = True

End If
End If

If Err.Number <> 0 Or (lStatus > 790) Then ' if this value is > 700 but <= 790,
then re-OCR is required, if it is greater than 790, then re-importing is needed
- extend the script below to set a different output state, other than the
standard "DesiredOutputStateSucceeded" one

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 23 of 207

Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, "Loading return code is {" &
CStr(Err.Number) & "} and loading status is {" & CStr(lStatus) &
"}"
Project.LogScriptMessageEx CDRTypeInfo,
CDRSeveritySystemMonitoring, "Ignoring internal error when loading
Workdoc [" & theWorkdoc.Filename & "]"
Project.LogScriptMessageEx CDRTypeWarning,
CDRSeverityEmailNotification, “Document [“ & strWorkdocName & “]
with stream exit code [“ & CStr (lStatus) & “] will be redirected
to manual processing state”
Err.Clear

DesiredOutputStateSucceeded = 850
pBatch.FolderDocState(lFolderIndex, lDocIndex) =
DesiredOutputStateSucceeded
If Err.Number <> 0 Then

Project.LogScriptMessageEx CDRTypeError,
CDRSeveritySystemMonitoring, "Recovery script:
put_FolderDocState failed with error code [" & CStr(Err.Number)
& "] and error description [" & Err.Description & "]"
Err.Clear

End If

' [AE] [2012-03-27] Do not call update document in case of 850
type recovery - just update the document state via the call above

‘ pBatch.UpdateDocument(theWorkdoc, lFolderIndex, lDocIndex)
‘ If Err.Number <> 0 Then

‘ Project.LogScriptMessageEx CDRTypeError,
CDRSeveritySystemMonitoring, "Recovery script: UpdateDocument
failed with error code [" & CStr(Err.Number) & "] and error
description [" & Err.Description & "]"
‘ Err.Clear

‘ End If

End If

Set theWorkdoc = Nothing

' [AE] [2012-03-05] Auto-apply the RTS instance restart after recovering every
single case of true document loading failure. This is to ensure that
corruption's side effects are not cumulated across multiple auto-recovered
documents and clean documents are not negatively affected by attempts to load a
corrupted one.
If bNeedSafetyRestart = True Then

Project.PerformScriptCommandRTS(1, 0, 0, "Applying safety
recovery restart")
GoTo LABEL_SUCCESS

End If

End If
Next lDocIndex

Next lFolderIndex

LABEL_SUCCESS:
Project.LogScriptMessageEx CDRTypeInfo, CDRSeveritySystemMonitoring,
"ScriptModule_ProcessBatch finished sucessfully, batch <" &
CStr(pBatch.BatchID) & ">, new state <" & CStr(DesiredOutputStateSucceeded)
& ">, old state <" & CStr(InputState) & ">"
Exit Sub

LABEL_ERROR:
Project.LogScriptMessageEx CDRTypeError, CDRSeveritySystemMonitoring,
"ScriptModule_ProcessBatch, finished with Error: " & Err.Description

End Sub

Use the corresponding Terminate Event (see section 1.2.1.17) script
instead to delete these empty batches. Do not use both scripts
within one project, because the Terminate Event script will make it
impossible to load the ProcessBatch script.

1.2.1.13. RouteDocument

RouteDocument

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 24 of 207

Description Routes a document to a special state, depending on the data of the
current WorkDoc.

Syntax ScriptModule_RouteDocument (pWorkdoc As ISCBCdrWorkdoc,
State As Single)

Parameters pWorkdoc: Workdoc object, which was classified and extracted

 State: This parameter contains the current state, which will
be assigned to the Workdoc. Value can be changed
from the script

Example
Private Sub ScriptModule_RouteDocument(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, State As Integer)
If pWorkdoc.Fields(“Field1”).Valid = FALSE then
'route to 500 if Field1 is not valid
State = 500
Exit sub
End if
If pWorkdoc.Fields(“Field2”).Valid = FALSE then
'route to 520 if Field2 is not valid
State = 520
Exit sub
End if
'else use default state
End Sub

For example, in an environment where the Batch folder is shared between
multiple organisations (either country groups, or departments), it is possible
to allocate verifiers their own workflow configurations.

The following script automatically sets the Batch status after extraction to a
status which is country based (eg, GB is status 550, Germany is status
551…).

Private Sub ScriptModule_RouteDocument(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, State As Integer)
‘Event triggered after an event execution completes.
If State = 550 And Not fnIsVerifier() Then ‘If the batch state is
550 and document is not in verifier
Select Case CountryCode ‘Check country code and set batch status
accordingly.
Case "GB"
State = 550
Case "DE"
State = 551
Case "BENL"
State = 552
Case "IE"
State = 553
Case "RU"
State = 554
Case "US"
State = 555
Case Else
State = 550
End Select

pWorkdoc.Save(pWorkdoc.Filename,"") ‘Save the work doc after
changing document status
End If
End Sub

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 25 of 207

1.2.1.14. SecurityUpdateAddUserGroup

SecurityUpdateAddUserGroup and
SecurityUpdateAddUserGroupPwd

Description This method is used to update, or add, the database security
credentials. This script call is used in creating or updating the
Perceptive Intelligent Capture users, roles, and groups.

When updating the security policy of Perceptive Intelligent
Capture via custom script, only the database tables will be
updated. The project security will not be modified after a script
update.

Use the SecurityUpdateAddUserGroupPwd method to import
user accounts with predefined passwords.

Syntax SecurityUpdateAddUserGroup(UserName As String,
ExternalGroupID As Long, UserRole As
String,UserDomain String)

SecurityUpdateAddUserGroupPwd (UserName As String,
UserPassword as String, ExternalGroupID As Long,
UserRole As String,UserDomain String)

Parameters UserName: The Username to create or update within
the database. This will be the user
credentials to type to log into the system. If
Domain is populated, the user must enter
MyDomain\UserName for logging into the
verification application.

 UserPassword: This password will be applied only when
creating a new user. For those auto-
imported users that were previously
imported into Perceptive Intelligent
Capture, the password will remain
unchanged.

Use case rules:
1. Auto-imported users with empty

password are required to change their
password upon first login.

2. Auto-imported users with NON-empty
password are NOT required to change
their password upon first login.

3. Auto-imported users who already
changed their password upon first
login will not be required to change
their password anymore.

 ExternalGroupID: The external group ID security number. A
batch and a user can be assigned a group
ID which would enable the user to verify

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 26 of 207

only batches which fall under the same
group ID that is assigned to that user.

 UserRole: The user role assigned to the verifier user.
The role can be one of the following text
strings:

• VER - Verifier user.

• SLV - Verifier supervisor (learnset
nomination)

• SLM - Learnset Manager (global
learnset manager)

• ADM - Administrator.
• FLT - Filtering

 UserDomain: The user domain is left blank if no
Windows Authentication is used. Or when
using Windows Authentication, populated
with the Domain name the Windows user
belongs to.

 The following combinations of roles are possible:
 Project.SecurityUpdateAddUserGroup "User2", 999, "VER|FLT",
"BDomain"

--> This creates a user with Verifier and Filter roles, but with no
SET role
 Project.SecurityUpdateAddUserGroup "User2", 999, "VER|SET|FLT",
"BDomain"

--> This creates a user with Verifier, Settings and Filter roles
 Project.SecurityUpdateAddUserGroup "User2", 999, "VER",
"BDomain"

--> This creates a user with Verifier role only, with no SET and
FLT role

There is no need to combine SET/FLT roles with ADM, SLV, or
SLM as these are already containing FLT and SET roles by
default.

See Also SecurityUpdateStart, SecurityUpdateCommit,
UpdateSystemSecurity, PostImportBatch

Example The example below updates the database user security on a
regular basis. The script can be updated to lookup users/roles
and update the Perceptive Intelligent Capture user table.

Private Sub ScriptModule_UpdateSystemSecurity(ByVal InstanceName
As String)
 Project.SecurityUpdateStart
 Project.SecurityUpdateAddUserGroup "User1", 777, "VER",
"BDomain"
 Project.SecurityUpdateAddUserGroup "User2", 999, "SLV",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User3", 111, "VER",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User4", 888, "SLM",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User5", 222, "SET",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User6", 777, "VER|FLT",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User10", 777, "ADM",

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 27 of 207

"BDomain "
 Project.SecurityUpdateCommit
End Sub

1.2.1.15. SecurityUpdateCommit

SecurityUpdateCommit

Description This method completes the security update process. This script
call is required in order to complete updating the Perceptive
Intelligent Capture users, roles, and groups.

When updating the security policy of Perceptive Intelligent
Capture via custom script, only the database tables will be
updated. The project security will not be modified after a script
update.

Syntax Project.SecurityUpdateCommit

Parameters There are no parameters for this method.

See Also SecurityUpdateStart, SecurityUpdateAddUserGroup,
UpdateSystemSecurity, PostImportBatch

Example The example below updates the database user security on a
regular basis. The script can be updated to lookup users/roles
and update the Perceptive Intelligent Capture user table.

Private Sub ScriptModule_UpdateSystemSecurity(ByVal InstanceName
As String)
 Project.SecurityUpdateStart
 Project.SecurityUpdateAddUserGroup "User1", 777, "VER",
"BDomain"
 Project.SecurityUpdateAddUserGroup "User2", 999, "SLV",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User3", 111, "VER",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User4", 888, "SLM",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User5", 222, "SET",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User6", 777, "VER|FLT",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User10", 777, "ADM",
"BDomain "
 Project.SecurityUpdateCommit
End Sub

1.2.1.16. SecurityUpdateStart

SecurityUpdateStart

Description This method instantiates the security update process. This script
call is required in order to begin updating the Perceptive
Intelligent Capture users, roles, and groups.

When updating the security policy of Perceptive Intelligent
Capture via custom script, only the database tables will be
updated. The project security will not be modified after a script
update.

Syntax Project.SecurityUpdateStart

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 28 of 207

Parameters There are no parameters for this method.

See Also SecurityUpdateAddUserGroup, SecurityUpdateCommit,
UpdateSystemSecurity, PostImportBatch

Example The example below updates the database user security on a
regular basis. The script can be updated to lookup users/roles
and update the Perceptive Intelligent Capture user table.
Private Sub ScriptModule_UpdateSystemSecurity(ByVal InstanceName
As String)
 Project.SecurityUpdateStart
 Project.SecurityUpdateAddUserGroup "User1", 777, "VER",
"BDomain"
 Project.SecurityUpdateAddUserGroup "User2", 999, "SLV",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User3", 111, "VER",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User4", 888, "SLM",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User5", 222, "SET",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User6", 777, "VER|FLT",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User10", 777, "ADM",
"BDomain "
 Project.SecurityUpdateCommit
End Sub

1.2.1.17. Terminate

Terminate

Description The Terminate event is called before a batch is closed after
processing.

Syntax ScriptModule_Terminate (ModuleName as String)

Parameters ModuleName: Name of the current module, values:
‘‘Designer,’ ''Verifier'' or ''Server''

Example
Private Sub ScriptModule_Terminate(ByVal ModuleName As String)
 DB.Close
 Set DB = nothing
End Sub

This script can be added to one of the real projects, triggering the
Terminate event in RTS. This script will erase all state 0 batches that
contain zero folders. Do not use this script piece together with the
corresponding ProcessBatch Event Script (section 1.2.1.11) within
one project, because this Terminate Event script will make it
impossible to load the ProcessBatch script:

Private Sub ScriptModule_Terminate(ByVal ModuleName As String)

On Error GoTo LABEL_ERROR

Project.LogScriptMessageEx CDRTypeInfo, CDRSeveritySystemMonitoring,
"Processing ScriptModule_Terminate event"

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 29 of 207

Dim i As Long

Dim pBatchRoot As New SCBCdrBATCHLib.SCBCdrBatchRoot

pBatchRoot.ActivateSupport = True

pBatchRoot.SetConnectionProperties("Version 5.4 SP1 Job", "Zero
Folder Batch Terminator", False)

pBatchRoot.Connect("Version 5.4 SP1 Job", "", "LOGIN_AS_CURRENT", "",
"Zero Folder Batch Terminator")

pBatchRoot.SetFilter(0)

For i = 0 To pBatchRoot.BatchCount - 1 Step 1

If pBatchRoot.FolderCount(i) = 0 Then

Project.LogScriptMessageEx CDRTypeWarning,
CDRSeveritySystemMonitoring, "Zero Folder Batch Terminator detected
batch with zero folders: [" & pBatchRoot.BatchID(i) & "]"

pBatchRoot.DeleteBatch(pBatchRoot.BatchID(i), False, 0, 0)

End If

Next i

Exit Sub

LABEL_ERROR:

Project.LogScriptMessageEx CDRTypeWarning,
CDRSeveritySystemMonitoring, "Zero Folder Batch Terminator failed to
search for zero folder batches. Error description: " &
Err.Description

End Sub

1.2.1.18. UpdateSystemSecurity

UpdateSystemSecurity

Description An event that is triggered when the Runtime Server is configured to
run with security update.

Only one Runtime Server instance should be configured to update
system security. The frequency of the security update is determined
via the Runtime Server instance properties.

Syntax ScriptModule_UpdateSystemSecurity(ByVal InstanceName As
String)

Parameters InstanceName: The Runtime Server instance name that is calling
the UpdateSystemSecurity event.

See Also ScriptModule Events, SecurityUpdateStart,
SecurityUpdateAddUserGroup, SecurityUpdateCommit,
PostImportBatch

Example The example below updates the database user security on a regular
basis. The script can be updated to lookup users/roles and update
the Perceptive Intelligent Capture user table.

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 30 of 207

Private Sub ScriptModule_UpdateSystemSecurity(ByVal InstanceName As
String)
 Project.SecurityUpdateStart
 Project.SecurityUpdateAddUserGroup "User1", 777, "VER", "BDomain"
 Project.SecurityUpdateAddUserGroup "User2", 999, "SLV", "BDomain "
 Project.SecurityUpdateAddUserGroup "User3", 111, "VER", "BDomain "
 Project.SecurityUpdateAddUserGroup "User4", 888, "SLM", "BDomain "
 Project.SecurityUpdateAddUserGroup "User5", 222, "SET", "BDomain "
 Project.SecurityUpdateAddUserGroup "User6", 777, "VER|FLT",
"BDomain "
 Project.SecurityUpdateAddUserGroup "User10", 777, "ADM", "BDomain
"
 Project.SecurityUpdateCommit
End Sub

1.2.1.19. VerifierClassify

VerifierClassify

Description This event occurs only in Verifier when a document is manually
classified.

Syntax ScriptModule_VerifierClassify (pWorkdoc As
ISCBCdrWorkdoc, Reason As CdrVerifierClassifyReason,
ClassName As String)

Parameters pWorkdoc: Reference to the currently processed document.

 Reason: The reason why the script routine decided to reject
or accept the document.

 ClassName: The name of the document class to which it is
classified manually.

1.2.1.20. VerifierFormLoad

VerifierFormLoad

Description There is a project event that can be called within Perceptive
Intelligent Capture which enables the user to switch verification
forms between different types of classes or to default the Verifier
application to display a certain page instead of the first one (see
DisplayPage for more details).

Syntax ScriptModule_VerifierFormLoad (pWorkdoc As
ISCBCdrWorkdoc, FormName As String, FormClassName As
String)

Parameters pWorkdoc: Reference to the currently processed
document.

 FormName: A string value that contains the current form
name that Verifier application is going to load.
The name can be modified in the custom script
to initiate loading of a different form when
required.

 FormClassName: A string variable that contains the current class
name of the verification form is to be loaded
from. This name can be changed from within

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 31 of 207

the Perceptive Intelligent Capture custom
script to point to a different document class, in
case the desired verification form is located in
this different class.

Example Private Sub ScriptModule_VerifierFormLoad(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, FormClassName As String, FormName As
String)

Select Case UCase(FormClassName)

Case "ALLRAUER"

FormClassName = "Invoices"

FormName = "Form_Invoices_2"

Case "BASH"

FormClassName = "Invoices"

FormName = "Form_Invoices_2"

Case "COMPUTER 2001"

FormClassName = "Invoices"

FormName = "Form_Invoices_2"

Case "CONTAC"

FormClassName = "Invoices"

FormName = "Form_Invoices_1"

Case "DRV"

FormClassName = "Invoices"

FormName = "Form_Invoices_1"

Case "RAB"

FormClassName = "Invoices"

FormName = "Form_Invoices_1"

Case "RUBIN"

FormClassName = "Invoices"

FormName = "Form_Invoices_2"

Case "XODEX"

FormClassName = "Invoices"

FormName = "Form_Invoices_2"

Case Else

FormClassName = "Invoices"

FormName = "Form_Invoices_1"

End Select

End Sub

1.3 Document
Cedar DocClass Event Interface.

Document events are specific for each Cedar DocClass instance. Each DocClass has its
own script module and implementation of script events.

1.3.1. FocusChanged

FocusChanged

Description This event will be fired each time before the focus inside the
verification form is changed. It is possible to influence the focus

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 32 of 207

change by modifying the pNewFieldIndex parameter. It is possible to
write a different field index into that parameter, which causes the
Verifier to change to specified field instead to the originally selected
field.

Syntax Document_FocusChanged (pWorkdoc As ISCBCdrWorkdoc,
Reason As CdrFocusChangeReason, OldFieldIndex As Long,
pNewFieldIndex As Long)

Parameters pWorkdoc: Reference to the currently displayed workdoc.

 Reason: Reason of the current focus change, which
can be Tab key, Enter key, mouse click, or
initial loading.

 OldFieldIndex: Index of the current select field. In case of
initial loading this will be -1.

 pNewFieldIndex: Index of the field which should be selected
now. Can be modified during the script event
to keep the focus in the previous field or set it
to another field.

Example Example:

Privat Sub Document_FocusChanged(pWorkdoc As SCBCdrWorkdoc, Reason As
CdrFocusChangeReason, OldFieldIndex As Long, pNewFieldIndex As Long)

'Below you can find the sample of script code that helps to skip
table

'data validation in Verifier (for a table with 2 columns):

Dim theEmptyTable As SCBCdrPROJLib.SCBCdrTable

Dim theEmptyTableField As SCBCdrPROJLib.SCBCdrField

'Initializes table and field references

Set theEmptyTable = _

pWorkdoc.Fields("EmptyTable").Table(pWorkdoc.Fields("EmptyTable").Act
iveTableIndex)

Set theEmptyTableField = pWorkdoc.Fields("EmptyTable")

'Makes table object valid

theEmptyTable.CellValid(0,0) = True

theEmptyTable.CellValid(1,0) = True

theEmptyTable.RowValid(0) = True

theEmptyTable.TableValid = True

'Makes table field valid
'(table object is a part of more generic field object)

theEmptyTableField.Valid = True

theEmptyTableField.Changed = False

'Releases references

Set theEmptyTable = Nothing

Set theEmptyTableField = Nothing

End Sub

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 33 of 207

1.3.2. OnAction

OnAction

Description This event will be fired if any of the configured actions was caused
by the user. Actions have to be configured in the Verifier design
mode. Actions can either caused if a user pressed a button or any of
the configured keyboard short cuts.

Syntax Document_OnAction (pWorkdoc As ISCBCdrWorkdoc,
ActionName As String)

Parameters pWorkdoc: Reference to the currently displayed workdoc.

 ActionName: Name of the action which was assigned to the
pressed button or short cut key.

Example Sub Document_OnAction(pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc, ByVal
ActionName As String)

 If ActionName = "ShowBestSuppliers" Then

 Call
fnShowBestSuppliers(pWorkdoc,pWorkdoc.Fields(FIELDNAME),"", "", "")

 End If

End Sub

1.3.3. PostExtract

PostExtract

Description The PostExtract event will be called after all defined analysis or
evaluation methods have been executed by the Cedar DocClass.
During this event, it is possible to examine and change the results of
one or more fields of the document.

This event can also be used in combination with generic Designer
settings to establish multiple classifications. In Designer, establish a
default classification result. Then set "pWorkdoc.DocClassName" to
a different class in this event. This technique enables you to keep
the generic extraction pointed toward the default class, while moving
the validation script a different class.

Syntax Document_PostExtract (pWorkdoc As ISCBCdrWorkdoc)

Parameters pWorkdoc: Current Workdoc object

Example
Private Sub Document_PostExtract(pWorkdoc As SCBCdrWorkdoc)
Dim Number as string
Dim Name as string

'get fields name and number
Number = pWorkdoc.Fields(“Number”)

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 34 of 207

Name = pWorkdoc.Fields(“Name”)

End Sub

1.3.4. PreExtract

PreExtract

Description The PreExtract event will be called before any defined analysis or
evaluation method will be executed by the Cedar DocClass.

Syntax Document_PreExtract (pWorkdoc As ISCBCdrWorkdoc)

Parameters pWorkdoc: Current Workdoc object

Example

Private Sub Document_PreExtract(pWorkdoc As SCBCdrWorkdoc)

Dim MyResult as string

MyResult = DoSomeMagic(pWorkdoc)

if (len(MyResult) > 0) then

'assign result to a single field

pWorkdoc.Fields(“Number”) = MyResult;

'skip defined analysis and evaluation methods

pWorkdoc.Fields(“Number”).FieldState

= CDRFieldStateEvaluated

end if

end Sub

1.3.5. PreVerifierTrain

PreVerifierTrain

Description A new PreVerifierTrain event has been added to control SLW
training in Verifier, Learnset Manager, and Designer.

This event is called at the point when an applications starts learning
for a document in the supervised learning workflow (SLW).

Syntax Document_PreVerifierTrain(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, pMode As Long)

Parameters pMode: It is reserved for for further useand should not be
used in the present software version.

Example The following script example demonstrates how the new script event
can be used in order to apply a substitution of the primary
Associative Seach Engine field with another result referring to a
different pool.

Private Sub Document_PreVerifierTrain(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, pMode As Long)

 If pWorkdoc.DocClassName = "NotGoodForPrimaryASEField" Then
Project.AllClasses.ItemByName("Invoices").ClassificationField =
"SecondaryAseField"

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 35 of 207

 End If

End Sub

1.3.6. Validate

Validate

Description The Validate event can be used to perform validation on document
level. At this point the validation of all single Fields has been
executed. If one of the Fields is still invalid, pValid will be FALSE.
During the Document_Validate event, it is possible to implement
validation rules combining several Fields. This may cause some
Fields to be invalid again. Please do not make the document invalid
if all Fields are valid because the Verifier needs an invalid Field for
focus control. If you want to keep the document invalid, always set at
least one Field to an invalid state.

It is also possible to make invalid Fields valid during document
validation. Therefore, you must set the Valid property of the
appropriate fields to TRUE.

Syntax Document_Validate (pWorkdoc As ISCBCdrWorkdoc, pValid
As Boolean)

Parameters pWorkdoc: Current Workdoc object

 pValid: Parameter containing the current valid state of the
Workdoc

Example
Private Sub Document_Validate(pWorkdoc As SCBCdrWorkdoc, pValid As
Boolean)
Dim Number as string
Dim Name as string

'get fields name and number and make a database lookup
Number = pWorkdoc.Fields(“Number”)
Name = pWorkdoc.Fields(“Name”)

if LookupDBEntry(Name, Number) = FALSE then
'the Name/Number pair is NOT in the database
'set the document state to invalid
pValid = FALSE
'make both fields invalid and provide an error description
pWorkdoc.Fields(“Number”).Valid = FALSE
pWorkdoc.Fields(“Number”).ErrorDescription = “Not in database”
pWorkdoc.Fields(“Name”).Valid = FALSE
pWorkdoc.Fields(“Name”).ErrorDescription = “Not in database”
end if
End Sub

1.3.7. VerifierTrain

VerifierTrain

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 36 of 207

Description After a document processed in self-learning Verifier has been
checked whether it is supposed to be automatically trained for the
local project, the Verifier has to fire an event that adds a document
to the local learnset

Syntax Document_VerifierTrain (pWorkdoc As ISCBCdrWorkdoc,
ProposedClassName As String, WillTrain As Boolean,
VerifierReason As CdrLocalTrainingReason, ScriptReason
As String)

Parameters pWorkdoc: Contains the reference to the currently
processed document

 WillTrain: Boolean value for the current learning state.
True, when the document is going to be learnt
and False when it will not be learnt.

 VerifierReason: Contains the reason why the document was
taken for training or why it was rejected. The
reason parameter should be one of the
predefined enumerated values for
CdrLocalTrainingReason.

 ScriptReason: Contains the reason why the script routine
decided to reject or accept the document.

1.4 <Fieldn> (Cedar FieldDef Event Interface)
Field events are specific for each Cedar field of each DocClass. Field events appear within
the script sheet of their DocClass. That means all events for the field “Number” of the
document class Invoice must be implemented within the script sheet of the DocClass
Invoice.

Within the script the name of the fields will appear as specifier for the field. That means the
Validate event for the field “Number” will appear as method "Number_Validate." During this
documentation, <Fieldn> will be used as a placeholder for the name of the field. The
Validate event will be named here as <Fieldn>_Validate.

1.4.1. CellChecked

CellChecked

Description Occurs when a check-box cell of the table has been checked or
unchecked by the user.

Syntax <Fieldn>_CellChecked (pTable As ISCBCdrTable, pWorkdoc
As ISCBCdrWorkdoc, Row As Long, Column As Long, Checked
As Boolean)

Parameters pTable: Current Table object.

 pWorkdoc: Current Workdoc object.

 Row: This parameter contains the index of the current
row on which the user clicked.

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 37 of 207

 Column: This parameter contains the index of the current
column on which the user clicked.

 Checked: Boolean value that is TRUE when the cell is
checked, otherwise its value is FALSE.

Example
Private Sub Table_CellChecked(pTable As SCBCdrPROJLib.SCBCdrTable,
pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc, ByVal Row As Long, ByVal
Column As Long, ByVal Checked As Boolean)
If Checked = True Then
'The cell (Row, Column) has been checked

End If
End Sub

1.4.2. CellFocusChanged

CellFocusChanged

Description This event occurs each time the focus inside the verification table is
going to be changed or can be changed potentially.

Syntax <Fieldn>_CellFocusChanged (pTable As ISCBCdrTable,
pWorkdoc As ISCBCdrWorkdoc, Reason As
CdrTableFocusChangeReason, OldRow As Long, OldColumn As
Long, pNewRow As Long, pNewColumn As Long)

Parameters pTable: Current Table object.

 pWorkdoc: Current Workdoc object.

 Reason: Parameter that contains the kind of focus change
that has occurred

 OldRow: This parameter contains the index of the
derivation row.

 OldColumn: This parameter contains the index of the
derivation column.

 pNewRow: This parameter contains the index of the
destination row. This value can be changed, e.g.,
set back to OldRow value, to forbid, for example,
double-clicks on the special column.

 pNewColumn: This parameter contains the index of the
destination column. This value can be changed,
e.g., set back to OldColumn value, to forbid, for
example, double-clicks on the special column.

Example
Private Sub Table_CellFocusChanged(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc,
ByVal Reason As SCBCdrPROJLib.CdrTableFocusChangeReason, ByVal OldRow
As Long, ByVal OldColumn As Long, pNewRow As Long, pNewColumn As
Long)

Select Case Reason
Case CdrTfcrCellBitmapClicked
'Occurs when a user clicks on cell's picture, e.g., on check-box

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 38 of 207

image of a check-box cell.
Case CdrTfcrCellDoubleClicked
'Occurs if a user double clicks on a table cell. Could be useful if
it ' is designed to
'Implement a kind of database look-up, etc by double clicking on a
cell.
Case CdrTfcrCellLocationClicked
'Occurs when a user clicks on a word that is linked to one of the
cells in image viewer.
'This will cause setting of keyboard focus to the corresponding table
cell.
Case CdrTfcrColumnMapped
'Occurs when a user maps a column.
Case CdrTfcrColumnsSwapped
'Occurs when a user swaps two columns.
Case CdrTfcrColumnUnmapped
'Occurs when a user unmaps a column.
Case CdrTfcrEnterPressed
'Occurs when "Enter" key is pressed, i.e. cell (table) validation is
activated.
Case CdrTfcrFocusRefreshed
'Occurs when the application refreshes a table.
Case CdrTfcrFormLoaded
'Occurs right after a new document to verify is loaded.
Case CdrTfcrMouseClicked
'Occurs when a cell is selected by mouse click.
Case CdrTfcrRowsMerged
'Occurs when rows were merged to one row.
Case CdrTfcrRowsRemoved
'Occurs when a user removes a row.
Case CdrTfcrTableCandidateChanged
'Occurs when a user changes current table candidate.
Case CdrTfcrTabPressed
'Occurs when the focus is changed to another cell by arrow keys or
TAB keys.
Case CdrTfcrUnknownReason
'Focus is changed due to unknown reason.
End Select
'Example of changing cell focus from the script:
'when document is opened, set focus to the first cell
If Reason = CdrTfcrFormLoaded Then
pNewRow = 0
pNewColumn = 0
End If
'Example of changing cell focus from the script: do not allow
selection of first cell by mouse
If OldRow = 0 And OldColumn = 0 And Reason = CdrTfcrMouseClicked Then
pNewRow = 1
pNewColumn = 1
End If
End Sub

1.4.3. Format

Format

Description The Format event can be used to reformat the content of a Field, for
example to unify a date or amount format or removing prefixes and
suffixes. This event can be used to prepare the field data for
validation. Be reminded that the content of pField.Text is normally
used for learning within the Scripting Guide engines. If the user
wants to change the output format for the fields' content rather use
the script event FormatForExport.

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 39 of 207

Syntax <Fieldn>_Format (pField As ISCBCdrField)

Parameters pField: Field object

Example
Private Sub Amount_Format(pField As SCBCdrField)
Dim NewAmount as string
if MyReformatAmount(pField, NewAmount) = TRUE then
'reformatting of the text field is successful to prepare a field for
validation
pField.Text = NewAmount
end if
End Sub

1.4.4. FormatForExport

FormatForExport

Description The FormatForExport event can be used to reformat the content of a
Field, for example to unify a date or amount format or removing
prefixes and suffixes and to keep this additional information within
pField.FormattedText rather than to change pField.Text. This text is
normally used for learning within the Scripting Guide engines. This
formatted text can also be used for Export.

Syntax <Fieldn>_FormatForExport (pField As ISCBCdrField)

Parameters pField: Current field.

Example

Private Sub Amount_Format(pField As SCBCdrField)

Dim NewAmount as string

if MyReformatAmount(pField, NewAmount) = TRUE then

'reformatting is successful to generate a unified output format for
the fields' content.

'Use the pField.FormattedText to save the reformatted information.

'You should then use pField.FormattedText also for the Export,
instead of pField.Text

pField.FormattedText = NewAmount

end if

End Sub

1.4.5. PostAnalysis

PostAnalysis

Description The PostAnalysis event will be called after the analysis step has
been performed. It is possible to examine the list of all candidates
and to add further candidates to the Field.

Syntax <Fieldn>_PostAnalysis (pField As ISCBCdrField,
pWorkdoc As ISCBCdrWorkdoc)

Parameters pField: Object containing the Field

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 40 of 207

 pWorkdoc: Current Workdoc object

Example
Private Sub MyField_PostAnalysis(pField As SCBCdrField,
pWorkdoc As SCBCdrWorkdoc)
Dim cindex as long, count as long, id as long
'add a new candidate to the field
if pWorkdoc.Wordcount > 42 then
'use the 42th word as new candidate
count = 1'wordcount of new candidate
id = 0 'rule-id for later backtracing
pField.AddCandidate 42, count, id, cindex
'cindex is the new index of the candidate
end if
End Sub

1.4.6. PostEvaluate

PostEvaluate

Description The PostEvaluate event will be called after the evaluation step has
been performed. It is possible to examine the list of all candidates
and to change their weights.

Syntax <Fieldn>_PostEvaluate (pField As ISCBCdrField,
pWorkdoc As ISCBCdrWorkdoc)

Parameters pField: Object containing the Field

 pWorkdoc: Current Workdoc object

Example
Private Sub MyField_PostEvaluate(pField As SCBCdrField, pWorkdoc As
SCBCdrWorkdoc)
'set the weight of the first candidate to 1
if pField.CandidateCount > 0 then
pField.Candidate(0).Weight = 1
end if
End Sub

1.4.7. PreExtract

PreExtract

Description The PreExtract event will be called before any defined analysis or
evaluation method for this Field is executed by the Cedar
DocClass.

Syntax <Fieldn>_PreExtract (pField As ISCBCdrField, pWorkdoc
As ISCBCdrWorkdoc)

Parameters pField: Object containing the Field

 pWorkdoc: Current Workdoc object

Example
Private Sub Today_PreExtract(pField As SCBCdrField,
pWorkdoc As SCBCdrWorkdoc)
'the field Today should contain the processing date of the document

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 41 of 207

Dim today as date
today = Date
pField = Format(date, “yyyymmdd”)
End Sub

1.4.8. SmartIndex

SmartIndex

Description The smart index event is called each time after smart indexing can
be performed for a certain Field. The event will be called for the
Field where the smart indexing was defined. This field usually
provides the key for the select statement.

Syntax <Fieldn>_SmartIndex (pField As ISCBCdrField, pWorkdoc
As ISCBCdrWorkdoc)

Parameters pField: Object containing the current Field

 pWorkdoc: Current Workdoc object

Example
Private Sub CustomerNo_SmartIndex(pField As
SCBCdrPROJLib.SCBCdrField, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc)
'avoid validation for the Name field if filled by smart indexing
pWorkdoc.Fields("Name").Valid = TRUE
End Sub

1.4.9. TableHeaderClicked

TableHeaderClicked

Description This event occurs when a user clicks on one of the table header
buttons. There are three different table header buttons: Row
Header button, the Column Header button, or Table Header button.

Syntax <Fieldn>_TableHeaderClicked (pTable As ISCBCdrTable,
pWorkdoc As ISCBCdrWorkdoc, ClickType As
CdrTableHeaderClickType, Row As Long, Column As Long,
pSkipDefaultHandler As Boolean)

Parameters pTable: Current Table object

 pWorkdoc: Current Workdoc object

 ClickType: The click type of the mouse depend on the place
where the click occurred either for the Column
Header, Row Header or Table Header and which
kind of click occurred either clicked, double-
clicked, or right button clicked.

 Row: This parameter contains the index of the current
row on which the user clicked.

 Column: This parameter contains the index of the current
column on which the user clicked.

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 42 of 207

 pSkipDefaultH
andler:

The default value is FALSE. When the user wants
to skip the default handling it has to be set to
True.

Example
Private Sub Table_TableHeaderClicked(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc,
ByVal ClickType As SCBCdrPROJLib.CdrTableHeaderClickType, ByVal Row
As Long, ByVal Column As Long, pSkipDefaultHandler As Boolean)

Select Case ClickType
Case CdrColumnHeaderClicked
'Table column header button has been clicked -
'define your message handler here
Case CdrColumnHeaderDoubleClicked
'Table column header button has been double clicked -
'define your message handler here
Case CdrColumnHeaderRightButtonClicked
'Right mouse button has been clicked on table column header -
'define your message handler here
Case CdrRowHeaderClicked
'Table row header button has been clicked -
'define your message handler here
Case CdrRowHeaderDoubleClicked
'Table row header button has been double clicked -
'define your message handler here
Case CdrRowHeaderRightButtonClicked
'Right mouse button has been clicked on table row header -
'define your message handler here
Case CdrTableHeaderClicked
'Table header button has been clicked -
'define your message handler here
Case CdrTableHeaderDoubleClicked
'Table header button has been double clicked -
'define your message handler here
Case CdrTableHeaderRightButtonClicked
'Right mouse button has been clicked on table header -
'define your message handler here
End Select

'Skip default handler of the table header clicked event
'(handler implemented in the Verifier component)
pSkipDefaultHandler = True
End Sub

1.4.10. Validate

Validate

Description The field Validate event can be used to perform project specific
validation rules. Use the pValid parameter to return the validation
decision. So if the parameter remains unchanged or if the event is
not implemented, the document state gets valid if all fields are
valid.

Syntax <Fieldn>_Validate (pField As ISCBCdrField, pWorkdoc As
ISCBCdrWorkdoc, pValid As Boolean)

Parameters pField: Object containing the current Field

 pWorkdoc: Current Workdoc object

 pValid: Parameter containing the current valid state of

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 43 of 207

the Field

Example
Private Sub Number_Validate(pField As SCBCdrField,
pWorkdoc As SCBCdrWorkdoc, pValid As Boolean)
‘check result of standard validation
if pValid = FALSE then
'standard validation returns invalid, stop here
exit sub
end if
'perform additional check for number format
if IsValidNumber(pField) = FALSE then
pValid = FALSE
pField.ErrorDescription = “Field is not a valid number”
end if
End Sub

1.4.11. ValidateCell

ValidateCell

Description This event method is called for each cell of the Table. Here you
can implement validation checks specific for a single cell.

Syntax <Fieldn>_ValidateCell (pTable As ISCBCdrTable,
pWorkdoc As ISCBCdrWorkdoc, Row As Long, Column As
Long, pValid As Boolean)

Parameters pTable: Current Table object

 pWorkdoc: Current Workdoc object

 Row: Given Row of the Table

 Column: Given column of the Table

 pValid: Parameter containing the current valid state of the
Table cell.

Example
Private Sub MyTableField_ValidateCell(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc,
ByVal Row As Long, ByVal Column As Long, pValid As Boolean)

Select Case Column
Case 0:
'check date in column 0
if CheckDate(pTable.CellText(Column, Row)) = FALSE then
pValid = FALSE
pTable. CellValidationErrorDescription(Column, Row) = “Invalid date”
end if
Case 2:
'check order number in column 2
if CheckOrderNumber(pTable.CellText(Column, Row)) = FALSE then
pValid = FALSE
pTable. CellValidationErrorDescription(Column, Row) = “Invalid order
number”
end if
End Select
End Sub

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 44 of 207

1.4.12. ValidateRow

ValidateRow

Description Implement validation rules, which combine two or more cells of a
row.

Syntax <Fieldn>_ValidateRow (pTable As ISCBCdrTable, pWorkdoc
As ISCBCdrWorkdoc, Row As Long, pValid As Boolean)

Parameters pTable: Table Object for which row is to be validated

 pWorkdoc: Current Workdoc object

 Row: Given row of the Table to be validated

 pValid: Parameter containing the current valid state of the
row

Example
Private Sub MyTableField_ValidateRow(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc,
ByVal Row As Long, pValid As Boolean)
'check if quantity * single price = total price
Dim quantity as long
Dim s_price as double, t_price as double

'all cells must already have a valid format
quantity = CLng(pTable.CellText(“Quantity”, Row))
s_price = CLng(pTable.CellText(“Single Price”, Row))
t_price = CLng(pTable.CellText(“Total Price”, Row))
if quantity*s_price = t_price then
pValid = TRUE
else
pValid = FALSE
pTable.RowValidationErrorDescription(Row) = “Invalid quantity or
amounts”
end if
End Sub

1.4.13. ValidateTable

ValidateTable

Description Implements a validation rule for the entire Table.

Syntax <Fieldn>_ValidateTable (pTable As ISCBCdrTable,
pWorkdoc As ISCBCdrWorkdoc, pValid As Boolean)

Parameters pTable: Table object

 pWorkdoc: Current Workdoc object

 pValid: Parameter containing the current valid state of the
Table

Example
Private Sub MyTableField_ValidateTable (pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc,
pValid As Boolean)
'calculate the sum of all amounts and compare with the net amount
fields

Scripting Reference Guide Chapter 1 Script Event Reference

Perceptive Intelligent Capture Page 45 of 207

Dim tablesum as double, netamount as double
Dim cellamount as double
Dim row as long
For row = 0 to pTabler.RowCount-1
cellamount = CLng(pTable.CellText(“Total Price”, Row))
tablesum = tablesum + cellamount
Next row
'now compare sum with the content of the net amount field
netamount = CDbl(pWorkdoc.Fields(“NetAmount”).Text
if netamount = tablesum then
pValid = TRUE
else
pValid = FALSE
pTable.TableValidationErrorDescription
=“Sum of table amounts and field net amount are different”
end if
End Sub

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 46 of 207

Chapter 2 Workdoc Object Reference
(SCBCdrWorkdocLib)

2.1 SCBCdrWorkdoc

2.1.1. Description
The Cedar Workdoc object stores all data of one Document. The amount of data
grows during the processing steps of OCR, classification and extraction.

2.1.2. Type Definitions

CDRDatabaseWorkflowTypes
The Workflow Type of the batch. These are standard Perceptive Intelligent Capture
workflow settings for batches.
This type interface is a member of the Cedar project library.
Available Types Description

CDRAutoTrainingFailed Value 20

CDRAutoTrainingSucceeded Value 19

CDRClassificationFailed Value 8

CDRClassificationSucceeded Value 7

CDRCleanupFailed Value 26

CDRCleanupSucceeded Value 25

CDRDocumentSeparationFailed Value 6

CDRDocumentSeparationSucceeded Value 5

CDREmailImportFailed Value 32

CDREmailImportSucceeded Value 31

CDRExportFailed Value 24

CDRExportSucceeded Value 23

CDRExtractionFailed Value 10

CDRExtractionSucceeded Value 9

CDRFileSystemExportFailed Value 28

CDRFileSystemExportSucceeded Value 27

CDRImportFailed Value 2

CDRImportSucceeded Value 1

CDRManualClassificationIncomplete Value 14

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 47 of 207

CDRManualClassificationSucceeded Value 13

CDRManualDocumentSeparationIncomplete Value 12

CDRManualDocumentSeparationSucceeded Value 11

CDRManualFinalValidationFullyIncomplete Value 18

CDRManualFinalValidationSucceeded Value 17

CDRManualTrainingFailed Value 22

CDRManualTrainingSucceeded Value 21

CDRModifiedByDesignerApplication Value 33

CDRModifiedByVerifierApplication Value 34

CDROCRFailed Value 4

CDROCRSucceeded Value 3

CDRPartialManualValidationIncomplete Value 16

CDRPartialManualValidationSucceeded Value 15

CDRReserved Value 100

CDRReset Value 0

CDRScanningFailed Value 30

CDRScanningSucceeded Value 29

CdrEdgeSide

The definition which determines the type of alignment/edges.

Available Types Description

CDREdgeLeft Chooses left alignment (left edges) in analysis.

CDREdgeRight Chooses right alignment (right edges) in analysis.

CDRHighlightMode
The highlighting mode for the workdoc displaying for the user (e.g. highlight candidates,
highlight fields only etc).

Available Types Description

CDRHighlightAttractors Attractor highlighting

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 48 of 207

CDRHighlightBlocks Block highlighting

CDRHighlightCandidates Candidates highlighting

CDRHighlightCandidatesAdvanced Highlights only candidates but
according to their advanced
highlighting type, also fires all
mouse events for all words

CDRHighlightCheckedWords Verified words highlighting

CDRHighlightCheckedWordsAndCandidates Verified words and candidate
highlighting

CDRHighlightCheckedWordsAndField Verified words and field
highlighting

CDRHighlightCheckedWordsAndFields Verified words and fields
highlighting

CDRHighlightFields Fields highlighting

CDRHighlightNothing No highlighting

CDRHighlightParagraphs Paragraph highlighting

CDRHighlightRectangles Variable rectangle highlighting

CDRHighlightTables Table highlighting

CDRHighlightTablesAdvanced Highlights checked words and
selected table cell, also shows
tool-tips for all words and fires
all mouse events for all words

CDRHighlightTextLines Text lines highlighting

CDRHighlightTextLinesAdvanced Highlights text lines according
their block number, show tool-
tips with line confidences, also
fires all mouse events

CDRHighlightTrainedFields Trained fields highlighting

CDRHighlightVerticalEdgesLeft Left aligned edges highlighting

CDRHighlightVerticalEdgesRight Right aligned edges
highlighting

CDRHighlightWords Word highlighting

CDRClassifyResult
This data type is responsible for specifying the result of classification for a specific
document class and specific classification engine. This is the same as the cell inside the

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 49 of 207

classification matrix within Designer.

Available Types Description
CDRClassifyMaybe Document may belong to DocClass but weights are

not available

CDRClassifyNo Document does not belong to this DocClass

CDRClassifyNotApplied Classification engine is not applied to this DocClass

CDRClassifyWeighted Classification weight property has valid content

CDRClassifyYes For sure document belongs to this DocClass

CDRDocState
The definition which determines the current state of the document within the workflow.

Available Types Description
CDRDocStateAnalyzed Document is analyzed

CDRDocStateBlocks Blocks are analyzed in document

CDRDocStateClassified Document is classified

CDRDocStateDeleted Document is deleted

CDRDocStateEvaluated Document is evaluated

CDRDocStateExported Document is exported

CDRDocStateHaveDocs Images or CIDocs are assigned to documents

CDRDocStateLanguage Language detection executed

CDRDocStateReset Initial state of document

CDRDocStateValid Validity state of document

CDRDocStateWorktext Worktext is assigned to document

CDRPageAssignment
This data type is responsible for specifying how the Document Pages are assigned to
the Workdoc.

Available Types Description
CDRPageAssignAllPages Assign all DocPages of Image or CIDoc to

Workdoc

CDRPageAssignNewPage First Page of Image or CIDoc appended as last
DocPage to Workdoc

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 50 of 207

CDRPageAssignNoPage No DocPages assigned to Workdoc

CDRPDFExportStyle
This data type is responsible for specifying the export type of PDF image out of
Perceptive Intelligent Capture.

Available Types Description
CDRPDF_ImgOnly Export only Image to PDF

CDRPDF_ImgOnTxt Export Image on top of text to PDF

CDRPDF_NoExport No Export for single DocPage

CDRPDF_NoThumbnails No thumbnail generated for DocPage

CDRPDF_TxtOnly Export only text to PDF

CDRDocFileType
Enumeration containing the type of input file.

Available Types Description
CDRDocFileTypeCroCIDoc Cairo CIDocument

CDRDocFileTypeCroImage Cairo image object

CDRDocFileTypeRawText Created from plain text without document

CDRDocFileTypeUnknown Unknown file type, maybe attachment

2.1.3. Methods and Properties

AddDocFile

Description Adds a file (CIDoc, image, raw text) into the workdoc.

Syntax AddDocFile (Path As String, FileType As CDRDocFileType,
Assignment As CDRPageAssignment)

Parameters FilePath: Path to the file to be added

 FileType: Filetype of the specified file. CIDoc, Image etc.

 Assignment: It specifies how DocPages are assigned to the
Workdoc

Example This code shows how to add a CI-PDF file to the workdoc.
ddDocFile("C:\coversheet.pdf",CDRDocFileTypeCroCIDoc,CDRPageAssignNewPa
ge)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 51 of 207

AddField

Description Adds a Field to the Workdoc

Syntax AddField (Name As String)

Parameters Name : Contains the name for the new field

Example This example adds the field “AdditionalField” to the workdoc
ddField("AdditionalField")

AddHighlightRectangle

Description Adds a Highlight rectangle on the page described by the parameters
below. Set HighlightMode SCBCDRHighlightRectangles to highlight
all rectangles.

Syntax AddHighlightRectangle (Left As Long, Top As Long, Width
As Long,
Height As Long, PageNr As Long, Color As OLE_COLOR)

Parameters Left: Left of highlight rectangle

 Top: Top of highlight rectangle

 Width: Width of highlight rectangle

 Height: Height of highlight rectangle

 PageNr: Document page number of highlight
rectangle

 Color: Color of highlight rectangle

Example pWorkdoc.AddHighlightRectangle(10,10,100,100,1,vbCyan)

AnalyzeAlignedBlocks

Description This method splits the document into blocks that contains only left
(or right) aligned lines. Using this method on a document with
centered lines only will usually result in one block per line.

Syntax AnalyzeAlignedBlocks (edgeSide As CDREdgeSide,
leftAlignTolerance As Long, XDist As Double, YDist As
Double, Join As Boolean, minDistance As Double)

Parameters edgeSide: Determines whether left or right aligned
blocks are to be found

 leftAlignTolerance: The distance (in mm) that aligned lines
might differ. Useful if document was
scanned slightly tilted.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 52 of 207

 XDist: A value, depending on the font size of a
word, which specifies, how far off an
existing block a word may be to belong to
that block. If its horizontal distance from the
block is greater that XDist, then a new block
is created

 YDist: This value specifies (in mm) the maximum
vertical distance for a word from a block. If
its distance is greater that YDist, a new
block is generated

 Join: Specifies whether overlapping blocks are to
be joined. Set to TRUE if you want to join
them.

 minDistance: This parameter is a factor to be multiplied
with leftAlignTolerance. It specifies the
minimal horizontal distance of two edges.
Set this value 0 to ignore its effect.

AnalyzeBlocks

Description To determine all the TextBlocks of text present in a Workdoc which
are minimum XDist apart from each other on X-axis and YDist apart
from each other on Y-axis.

Syntax AnalyzeBlocks (XDist As Double, YDist As Double)

Parameters XDist: Minimum X distance between two TextBlocks

 YDist: Minimum Y distance between two TextBlocks

AnalyzeEdges

Syntax AnalyzeEdges (edgeSide As CDREdgeSide, AlignTolerance
As Double,
YDist As Double, MinNoOfWords As Long, minDistance As
Double, [pageNr As Long = TRUE])

Description Analyzes a document set of words that are, within a certain
tolerance, aligned either right or left. Use Highlight mode
(SCBCDRHighlightVerticalEdgesLeft or
SCBCDRHighlightVerticalEdgesRight) to make the results visible.

Parameters edgeSide: Set this parameter to either CDREdgeLeft
or CDREdgeRight to specify if you want
edges that contain left or right aligned
words.

 AlignTolerance: This value (in mm) specifies how far the left
(right) values of words bounding rectangle

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 53 of 207

may differ in order forit to still be considered
aligned.

 YDist: Specifies (in mm) how far two words may
be apart vertically and still belong to the
same edge.

 MinNoOfWords: Specifies how many words have to belong
to a valid edge. Edges that contain less
than MinNoOfWords after analyzing the
document are deleted.

 minDistance: This parameter is a factor to be multiplied
with AlignTolerance. It specifies the minimal
horizontal distance of two edges. Set this
value 0 to ignore its effect.

 pageNr: [optional,defaultvalue(-1)] Specifies the
page to be analyzed for edges. Set to -1
(default) if analysis is needed for all pages.

AnalyzeEdges2

Description Same as AnalyzeEdges method, but it applies the processing for
visible text lines only (in case 'vbCheckedOnly' parameter is set to
TRUE, otherwise it works exactly like AnalyzeEdges).

Syntax AnalyzeEdges2 (edgeSide As CDREdgeSide, AlignTolerance
As Double, YDist As Double, MinNoOfWords As Long,
minDistance As Double, PageNr As Long, vbCheckedOnly As
Boolean)

Parameters edgeSide: Set this parameter to either CDREdgeLeft or
CDREdgeRight to specify if you want edges
that contain left or right aligned words.

 AlignTolerance: This value (in mm) specifies how far the left
(right) values of words bounding rectangle
may differ in order for it to still be considered
aligned.

 YDist: Specifies (in mm) how far two words may be
apart vertically and still belong to the same
edge.

 minDistance: This parameter is a factor to be multiplied with
AlignTolerance. It specifies the minimal
horizontal distance of two edges. Set this
value 0 to ignore its effect.

 PageNr: Specifies the page to be analyzed for edges.
Set to -1 (default) if analysis is needed for all
pages.

 vbCheckedOnly: If set to TRUE, the method applies processing
for visible text lines only, otherwise this

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 54 of 207

function works exactly like AnalyzeEdges.

AnalyzeParagraphs

Description This method is used to determine all the paragraphs present in a
Workdoc.

Syntax AnalyzeParagraphs ()

AppendWorkdoc

Description This method is used to append a given Workdoc to the existing
Workdoc.

Syntax AppendWorkdoc (pWorkdoc As ISCBCdrWorkdoc)

Parameters pWorkdoc: Workdoc that is to be appended

AssignDocToPage

Description This method should be used to assign a Page of an Image or CIDoc
to a certain DocPage of the Workdoc. This method requires that
there are already documents inserted to the Workdoc using the
AddDocFile function and the SetPageCount function must be called
before.

Syntax AssignDocToPage (DocIndex As Long, DocPage As Long,
WorkdocPage As Long)

Parameters DocIndex: Zero-based CIDoc or Image Index

 DocPage: Zero-based DocPage inside the Image or
CIDoc

 WorkdocPage: Zero-based DocPage inside the Workdoc

AttractorColor

Description Sets / returns the color that will be used for attractor highlighting.

Syntax AttractorColor As OLE_COLOR (read/write)

Example This example sets the AttractorColor to green

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 55 of 207

BatchID

Description A new property of the workdoc has been introduced to allow the
developer to retrieve the Batch ID that the current workdoc resides
in.

When a document is placed in a new exception batch, the attribute
updates to the new Batch ID.

Attribute strBatchID As String (Read Only)

Example The script sample below shows how to retrieve the Batch ID.
 chID As String

strBatchID = pWorkdoc.NamedProperty("BatchID")

BlockColor

Syntax BlockColor As OLE_COLOR (read/write)

Description Sets / returns the color which will be used for block highlighting.

Example This example sets the color for block highlighting to cyan
lockColor = vbCyan

BlockCount

Description Returns the number of TextBlocks of the Workdoc. Use this property
before accessing the TextBlock property where an index is required.
The range of valid indices for TextBlocks is from 0 to BlockCount –1.

Syntax BlockCount As Long (read only)

Example This example writes the text of each block to the string array
‘strBlockText’.

Dim intBlockCount As Integer

Dim i as Long

intBlockCount = pWorkdoc.BlockCount -1

ReDim strBlockText(intBlockCount)

For i=0 To intBlockCount

 strBlockText(i) = pWorkdoc.TextBlock(i).Text

Next i

CandidateColor

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 56 of 207

Description Sets / returns the color which will be used for candidate highlighting.

Syntax CandidateColor As OLE_COLOR (read/write)

Example This example sets the candidate color to magenta
pWorkdoc.CandidateColor = vbMagenta

Clear

Description This method is used to clear all the memories and to remove all the
documents from Workdoc.

This will leave the Workdoc in an initial state.

Syntax Clear ()

ClearHighlightRectangles

Description Removes all highlight rectangles.

Syntax ClearHighlightRectangles ()

ClsEngineConfidence

Description Sets / returns confidence level for a classification engine specified
by its index in collection of classification engines.

Syntax ClsEngineConfidence (lMethodIndex As Long) As Long
(read/write)

Parameters lMethodIndex: Zero-based engine index in collection of
classification engines.

Example This example shows a message box with the confidence value for
each classification engine.

 ividualResult As Double

Dim lEngineIndex As Long

For lEngineIndex = 0 To Project.ClassifySettings.Count

dblIndividualResult = (pWorkdoc.ClsEngineConfidence(lEngineIndex))

MsgBox "The classification confidence is " & dblIndividualResult

ClsEngineDistance

Description Sets / returns distance value for a classification engine specified by
its index in collection of classification engines.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 57 of 207

Syntax ClsEngineDistance (lMethodIndex As Long) As Long
(read/write)

Parameters lMethodIndex: Zero-based engine index in collection of
classification engines.

Example This example shows a message box for each class, showing the
classification engine distance.

 ividualResult As Double

Dim lEngineIndex As Long

For lEngineIndex = 0 To Project.ClassifySettings.Count

dblIndividualResult = (pWorkdoc.ClsEngineDistance(lEngineIndex))

MsgBox "The engine distance is " & dblIndividualResult

Next lEngineIndex

ClsEngineResult

Description Provides access to classification result matrix. This matrix will be
used during the classification step to store the results of each used
classification method for each document class (DocClass) of the
project. The matrix has one column for each classification method
and one column for the combined result of all methods. A row
contains the results for a single DocClass, therefore there will be
one row for each DocClass in the classification matrix. The matrix
will be created during the classification step, but not saved to disk.
After reloading the Workdoc, the matrix is no longer available.

The method returns the classification matrix as CDRClassifyResult.
See the type definition for further details.

Syntax ClsEngineResult (MethodIndex As Long, DocClassIndex As
Long) As CDRClassifyResult (read/write)

Parameters MethodIndex: MethodIndex = 0 can be used to access the
voted result of all classification methods. A
MethodIndex of 1 - n can be used to access the
results of the single classification methods. The
sorting of the classification methods within the
array is determined by the Collection of
classification settings of the Perceptive
Intelligent Capture Project. You can access this
Collection from the script as
Project.ClassifySettings which has a type of
SCBCroCollection. Use the Count property to
get the number of used classification engines or
use the ItemIndex / ItemName property to find
the index of classification method or the name
for an index.

 DocClassIndex: The DocClassIndex is determined by the
Collection of all DocClasses. You can access
this Collection from script as Project.AllClasses
which has a type of SCBCroCollection. Use the

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 58 of 207

Count property to get the number of
DocClasses or use the ItemIndex / ItemName
property to find the index of DocClass or the
name for an index.

Example The following example sets the classification result of the Brainware
Classify Engine to YES for a document in docclass “VOID”. If
Brainware Classify is the only engine or all other classes would be
CDRClassifyNo, the document would get classified as VOID.

lsEngineResult(Project.ClassifySettings.ItemIndex("Brainware Classify
Engine"), Project.AllClasses.ItemIndex("VOID"))= CDRClassifyYes

ClsEngineWeight

Description Provides access to the classification weights within the Classification
Result Matrix.

Syntax ClsEngineWeight (MethodIndex As Long, DocClassIndex As
Long) As Double (read/write)

Parameters MethodIndex: MethodIndex = 0 can be used to access the
voted result of all classification methods. A
MethodIndex of 1 - n can be used to access the
results of the single classification methods. The
sorting of the classification methods within the
array is determined by the Collection of
classification settings of the Perceptive
Intelligent Capture Project. You can access this
Collection from the script as
Project.ClassifySettings which has a type of
SCBCroCollection. Use the Count property to
get the number of used classification engines or
use the ItemIndex / ItemName property to find
the index of classification method or the name
for an index.

 DocClassIndex: The DocClassIndex is determined by the
collection of all document classes. You can
access this Collection from script as
Project.AllClasses that is a type of
SCBCroCollection. Use the Count property to
get the number of DocClasses or use the
ItemIndex / ItemName property to find the index
of DocClass or the name for an index.

CreationDate

Description A new property of the workdoc has been introduced to allow the
developer to retrieve the Creation Date of the current workdoc.

When a document is placed in a new exception batch, the attribute
updates to a new date/time stamp.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 59 of 207

Attribute Read Only

Example The script sample below shows how to retrieve the Creation Date.
 tionDate As Date

dtCreationDate = pWorkdoc.NamedProperty("CreationDate")

CreationDateAsFileTimeUTC

Description A new property of the workdoc has been introduced to allow the
developer to retrieve the Creation Date in UTC of the current
workdoc.

When a document is placed in a new exception batch, the attribute
updates to a new date/time stamp.

Attribute Read Only

Example The script sample below shows how to retrieve the Creation Date.
Dim dtCreationDateUTC As Long
dtCreationDateUTC =
pWorkdoc.NamedProperty("CreationDateAsFileTimeUtc")

CreateFromWorktext

Description Creates Workdoc from the OCRed text of an Image.

Syntax CreateFromWorktext (pWorktext As ISCBCroWorktext)

Parameters pWorktext: Object pointer of Worktext.

CutPage

Description Cuts the current Workdoc and generates a new Workdoc from
DocPages present after the given PageIndex.

Syntax CutPage (PageIndex As Long, ppNewWorkdoc As
ISCBCdrWorkdoc)

Parameters PageIndex: [in] Zero-based index of DocPage after which
the Workdoc has to be cut

 ppNewWorkdoc: [out] New Workdoc generated as part of the
current Workdoc

CurrentBatchState

Description This is a property which returns the temporary document batch state
(a numeric value between 0 and 999. This value is set by the

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 60 of 207

methods LoadWorkdoc and UpdateDocument of the Cedar Batch
component.

Syntax pWorkdoc.CurrentBatchState (Read only)

DeleteFile

Description Deletes all wdcs and corresponding TIFs of the Workdoc.

Syntax DeleteFile (DeleteDocFiles As Boolean)

Parameters DeleteDocFiles: Flag to inform whether to delete files or not

DisplayPage

Description Sets / returns the displayed DocPage specified by zero-based index
of the Workdoc in the Viewer.

Syntax DisplayPage As Long (read/write)

Example If a customer requires to default Verifier to display a specific page of
each document instead of the first one, use the DisplayPage
property in the script.

In the example below, the script looks at all pages greater than, or
equal to, 4 and displays Page 3.
Private Sub ScriptModule_VerifierFormLoad(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, FormClassName As String, FormName As
String)

If pWorkdoc.PageCount >=3 Then pWorkdoc.DisplayPage = 2

End Sub

 presents Page 1, 1-Page 2, 2-Page 3, etc.

DocClassName

Description Sets / returns the name of the DocClass to which the document was
classified.

Syntax DocClassName As String (read/write)

Example

Private Sub ScriptModule_PreClassify(pWorkdoc As SCBCdrWorkdoc)

if (DoSomeMagic(pWorkdoc) = TRUE) then

'assign “Invoice” as result of the classification

pWorkdoc.DocClassName = ''Invoice''

else

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 61 of 207

'do nothing and continue with normal classification

end if

End Sub

DocFileCount

Description Returns the number of documents from which the Workdoc was built
from.

Syntax DocFileCount As Long (read only)

DocFileDatabaseID – Unique ID

Description The read only property pWorkdoc.DocFileDatabaseID returns the
database ID of document files attached to a Perceptive Intelligent
Capture Workdoc. It corresponds to the [File].[Id] value in the
database. The document file index has to be passed as a parameter
when using DocFileDatabaseID property.

Use this property in custom script as a unique identifier of document
files that were processed by Perceptive Intelligent Capture.

Attribute Read only

Syntax DocFileDatabaseID (ByVal Index As long) As Long

Parameters Index The index parameter has a valid range from 0
to PageCount-1

Example
Dim lUniqueID As Long
lUniqueID = pWorkdoc.DocFileDatabaseID(pWorkdoc.DocFileCount - 1)
The script example above demonstrates how to retrieve the unique
ID of the last document file attached to a Workdoc.

DocFileName

Description Returns the full pathname of a document (image or text file) the
Workdoc was built from.

Syntax DocFileName (index As Long) As String (read only)

Parameters Index: The index parameter has a valid range from 0 to
DocFileCount-1.

Example If a Workdoc was created from a single document (e.g., Multi Tiff),
the name of the document file can be retrieved accessing the index
0.
Path = pWorkdoc.DocFileName(0)

The script function below returns the TIF file creation date and can

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 62 of 207

be used.
Public Function fnGetFileDate(pWorkdoc As

SCBCdrPROJLib.SCBCdrWorkdoc) As String

Dim FSO As New Scripting.FileSystemObject

Dim oFile As Scripting.File

Dim strFileName As String

Dim dtCreated As Date

strFileName = Replace(pWorkdoc.DocFileName(0),".wdc",".tif")

If FSO.FileExists(strFileName) Then

Set oFile = FSO.GetFile(strFileName)

dtCreated = oFile.DateCreated

fnGetFileDate = Month(dtCreated) & "/" & Day(dtCreated) & "/" &

Year(dtCreated)

End If

Set FSO = Nothing

Set oFile = Nothing

End Function

DocFileType

Description Returns the file type of the document by the specified index.

Syntax DocFileType (index As Long) As CDRDocFileType (read
only)

Parameters Index: The index parameter has a valid range from 0 to
DocFileCount-1.

DocState

Description Sets / returns the current state of the document.

Syntax DocState As CDRDocState (read/write)

EdgeCount

Description Returns the number of vertical edges found in a document.

Syntax EdgeCount (edgeSide As CDREdgeSide) As Long (read only)

Parameters edgeSide: Flag to distinguish between left and right edges.

ErrorDescription

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 63 of 207

Description Sets / returns an error description.

Syntax ErrorDescription As String (read/write)

Example

Private Sub Document_Validate(pWorkdoc As SCBCdrWorkdoc, pValid As
Boolean)

Dim Number as string

Dim Name as string

'get fields name and number and make a database lookup

Number = pWorkdoc.Fields(“Number”)

Name = pWorkdoc.Fields(“Name”)

if LookupDBEntry(Name, Number) = FALSE then

'the Name/Number pair is NOT in the database

'set the document state to invalid

pValid = FALSE

'make both fields invalid and provide an error description

pWorkdoc.Fields(“Number”).Valid = FALSE

pWorkdoc.Fields(“Number”).ErrorDescription = “Not in database”

pWorkdoc.Fields(“Name”).Valid = FALSE

pWorkdoc.Fields(“Name”).ErrorDescription = “Not in database”

end if

End Sub

FieldColor

Description Sets / returns the color which will be used for highlighting of valid
and invalid Fields.

Syntax FieldColor (FieldValid As Boolean) As OLE_COLOR
(read/write)

Parameters FieldValid: If set to TRUE it specifies the color for valid Fields or
it specifies the color for invalid Fields if FALSE.

Fields

Description Provides access to all Fields of a document.

Syntax Fields As ISCBCdrFields (read only)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 64 of 207

Example To read the text content of a simple Field use the following
command:
Dim FieldContent as string

FieldContent = pWorkdoc.Fields.Item(“MyField”).Text

Filename

Description Contains the database ID of the Workdoc itself. Returns the
database workdoc ID/Name.

Note: To retrieve the filename of the image from which the workdoc
was created please use the DocFileName property found above!

Syntax Filename As String (read only)

Folder

Description Access the Folder to which the Workdoc belongs to.

Syntax Folder As ISCBCdrFolder (read only)

FolderIndex

Description Provides the index of Folder a Workdoc belongs to.

Syntax FolderIndex As Long (read only)

ForceClassificationReview

Description In the application, the PostClassify event has been extended so that
it can force a manual classification review even if the classification
succeeded.

Attribute Read/Write

Example The script sample below shows how the manual classification
process can be forced from custom script event “PostClassify”.
Private Sub ScriptModule_PostClassify(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc)
If pWorkdoc.DocClassName = "VeryImportantClass" Then
pWorkdoc.ForceClassificationReview = True
End If
End Sub

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 65 of 207

GetEdge

Description Returns the coordinates left, top and bottom of the corners for an
edge, which is interpreted as a rectangle.

Syntax GetEdge (edgeSide As CDREdgeSide, edgeIndex As Long,
pLeft As Long,
pTop As Long, pBottom As Long, pPageNr As Long)

Parameters edgeSide: Set this parameter to either CDREdgeLeft or
CDREdgeRight to specify if you want edges that
contain left or right aligned words.

 edgeIndex: Index of the edge to be returned, valid indices are
from 0 to the result of EdgeCount – 1

 pLeft: Contains left coordinate of the edge.

 pTop: Contains top coordinate of the edge.

 pBottom: Contains bottom coordinate of the edge.

 pPageNr: Contains page number of the edge.

GetFileSizeKB

Description Retrieve the file size of an image/document via custom script.

Syntax GetFileSizeKB(pWorkdoc As SCBCdrWorkdoc) As Integer

Example Private Function GetFileSizeKB(pWorkdoc As SCBCdrWorkdoc) As Integer

Dim FSO As FileSystemObject

Dim ImageFile As File

On Error GoTo ErrHandler

Set FSO = New FileSystemObject

Set ImageFile = FSO.GetFile(pWorkdoc.DocFileName(0))

GetFileSizeKB = Round(ImageFile.Size/1024)

Exit Function

ErrHandler:

GetFileSizeKB = -1

End Function

GetWorktextForPageArea

Description A function which returns a worktext object from a specific location on
a document. The worktext object will contain text and positional
information relating to the area specified in
GetWorktextForPageArea. This can be considered as a temporary

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 66 of 207

zone to read a piece of information via script and review the returned
result for that area.

The area to search will start from Left and Top coordinates and
finish at Width and Height coordinares, provided in pixels. These are
the same coordinates that would be entered for a reading zone (see
Designer User Guide, Setting up Zone Analysis).

The scripter may test their page area coordinates using a zone.

Syntax GetWorktextForPageArea(Page, Left, Top, Width, Height,
IncludePartial)

Parameters Page: page number of the image. 0 represents the first
page of a multi page document.

 Left: left coordinate of the page area

 Top: top most coordinate of the page area

 Width: width (length) of the area

 Height: height of the area

 includePartial: Boolean flag.

> False – restricts reading of worktext to specified
area

> True - completes words that appear partially in
the specified area with outside information

Example of
includeParti
al

 The word "Invoice" exists on the page, but our page area only
captures "Inv". Setting includePartial to False will return only "Inv",
setting includePartial to True will return the entire word "Invoice".

Example of
the code to
use

 The example below takes the OCR results of the top left page area
and places the result into the first row table cell.
Dim ptrWorkText As SCBCroWorktext
Set ptrWorkText = New SCBCroWorktext
Set ptrWorkText = pWorkdoc.GetWorktextForPageArea(0, 100, 100, 300,
300,True)
pWorkdoc.Fields.ItemByName("TableField").Table(0).CellWorktext(0,0) =
ptrWorkText

HighlightCandidate

Description Set / returns the position of highlighted Candidate.

Syntax HighlightCandidate As Long (read/write)

HighlightField

Description Sets / returns the position of the highlighted Field.

Syntax HighlightField As Long (read/write)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 67 of 207

HighlightMode

Description Sets / returns the current mode of highlighting.

Syntax HighlightMode As CDRHighlightMode (read/write)

Image

Description Returns an Image object for the specified DocPage of the Workdoc.

Syntax Image (index As Long) As ISCBCroImage (read only)

Parameters Index: Index of the DocPage which is valid from 0 to
PageCount - 1.

IsPlainText

Description Sets or returns if worktext is plain text or not.

Syntax IsPlainText As Boolean (read/write)

Language

Description Sets / returns the language of the document, as it was specified by
the language detection or the default language of the Project.

Syntax Language As String (read/write)

LineColor

Description Sets / returns the Color which will be used for line highlighting.

Syntax LineColor As OLE_COLOR (read/write)

Load

Description Loads a file from given root path and this root path is not the
absolute path of the file.

Syntax Load (Filename As String, ImageRootPath As String)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 68 of 207

Parameters Filename: Name of the file.

 ImageRootPath: Relative path of the file.

PageCount

Description Returns the number of displayable DocPages of the Workdoc.

Syntax PageCount As Long (read only)

Example intImageCount=pWorkdoc.PageCount 'Get the number of pages in TIF

Pages

Description Returns the single DocPages of the Workdoc.

Syntax Pages (PageIndex As Long) As ISCBCdrDocPage (read only)

Parameters PageIndex: Index of the DocPage to access, which is valid
from 0 to PageCount-1.

Paragraph

Description Provides access to the paragraph array of the Workdoc.

Syntax Paragraph (index As Long) As ISCBCdrTextBlock (read
only)

Parameters Index: Specifies the index of the paragraph. Valid
indexes are from 0 to the result of
ParagraphCount – 1.

ParagraphCount

Description Returns the number of paragraphs in the document.

Syntax ParagraphCount As Long (read only)

PDFExport

Description Generates a PDF file from Workdoc based on the given export type.

Syntax PDFExport (FileName As String)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 69 of 207

Parameters FileName: Name of the PDF file exported.

PDFGetInfoType

Description Returns the export type of given Page of PDF file.

Syntax PDFGetInfoType (PageIdx As Long, pExportStyle As
CDRPDFExportStyle)

Parameters PageIdx: Page number of PDF.

 pExportStyle: Type of Export.

PDFSetInfoType

Description Sets the type of export of PDF.

Syntax PDFSetInfoType (PageIdx As Long, ExportStyle As
CDRPDFExportStyle)

Parameters PageIdx: Zero-based DocPage Number.

 ExportStyle: Type of export

ReadZone

Description It is a part of the OCR-on-demand concept.

Syntax ReadZone (PageIndex As Long, [left As Double = FALSE],
[top As Double = FALSE], [right As Double = 1],
[bottom As Double = 1])

Parameters PageIndex: Specifies the DocPage where the OCR or text
conversion should be executed. Valid indices are 0
to PageCount - 1 for working on single pages or -1
for executing OCR on all DocPages.

 Right: [in,optional,defaultvalue(1)] Specifies the right
border of the OCR region in percent. Use 100 here
to read until the right border.

 Left: [in,optional,defaultvalue(0)] Specifies a left offset for
the OCR region in percent. Use 0 here to read from
the left border.

 Top: [in,optional,defaultvalue(0)] Specifies the top offset
for the OCR region in percent. Use 0 here to read
from the top border.

 Bottom: [in,optional,defaultvalue(1)] Specifies the bottom line
of the OCR region in percent. Use 100 here to read

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 70 of 207

until the bottom border.

Refresh

Description Refreshes the Workdoc's DocPage which is currently shown in the
Viewer.

Syntax Refresh ()

RenameDocFile

Description To change the name of the CIDoc or Image at given DocIndex by
the given new name.

Syntax RenameDocFile (DocIndex As Long, NewName As String)

Parameters DocIndex: Specifies the zero-based CIDoc or Image Index.

 NewName: New name given to the document at DocIndex.

ReplaceFirstImage

Description Replaces first image in Workdoc.

Syntax ReplaceFirstImage (Path As String)

Parameters Path: Image path to replace the existing workdoc's image
with.

Save

Description Saves a Workdoc with given filename and its DocFiles relatively at
given ImageRootPath

Syntax Save (Filename As String, ImageRootPath As String)

Parameters Filename: Filename of Workdoc

 ImageRootPath: Relative path where all corresponding
DocFiles are saved, empty if files are saved
in the same directory as the Workdoc.

SetDocPageIndex

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 71 of 207

Description This method has been added to allow the script implementation of
the page merging workflow step.

Example The following short script example shows how this new public
method can be used to append one document to another.

 = 0 To thePreviousWorkdoc.PageCount -1 Step 1

 theNextWorkdoc.InsertPage (thePreviousWorkdoc, j, True,
theNextWorkdoc.PageCount)

 theNextWorkdoc.Pages (theNextWorkdoc.PageCount -
1).SetDocPageIndex(0, j + 1)

 End If

ShowTooltips

Description Sets / returns if tool tips will be displayed when moving the mouse
pointer over the displayed Workdoc.

Syntax ShowTooltips As Boolean (read/write)

SkipTrainingWithEngine

Description Identifies whether the specified trainable engine has to skip this
document in the training process.

Syntax SkipTrainingWithEngine (bstrEngineName As String) As
Boolean (read/write)

Parameters bstrEngineName: Name of classification engine.

Table

Description Returns a Table for given index of the Workdoc.

Syntax Table (index As Long) As ISCBCdrTable (read only)

Parameters Index: Specifies the index of the Table. Valid indices are
from 0 to TableCount-1.

TableCount

Description Returns the number of Table objects stored within the Workdoc.

Syntax TableCount As Long (read only)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 72 of 207

TextBlock

Description Returns TextBlock by index of the Workdoc.

Syntax TextBlock (index As Long) As ISCBCdrTextBlock (read
only)

Parameters Index: [in] Specifies the index of the TextBlock. Valid indices
are from 0 to BlockCount-1.

Textline

Description Returns text line by index of the Workdoc.

Syntax Textline (index As Long) As ISCBCdrTextBlock (read
only)

Parameters Index: Zero-based index.

TextlineCount

Description Retrieves the number of text lines present in a Workdoc.

Syntax TextlineCount As Long (read only)

TrainedWithEngine

Description Indicates whether this document is trained with the specified engine.

Syntax TrainedWithEngine (bstrEngineName As String) As Boolean
(read only)

Parameters bstrEngineName: Name of engine.

UnloadDocs

Description Releases all the Images and CIDocs which belong to this Workdoc.

Syntax UnloadDocs ()

Word

Description Provides access to the Word array of the Workdoc.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 73 of 207

Syntax Word (index As Long) As ISCBCdrWord (read only)

Parameters Index: [in] Index of the requested Word. Valid indices are
from 0 to WordCount-1.

WordColor

Description Sets / returns the color that will be used for Word highlighting.

Syntax WordColor As OLE_COLOR (read/write)

WordCount

Description Returns the number of Words of the Workdoc.

Syntax WordCount As Long (read only)

Example
Private Sub MyField_PostAnalysis(pField As SCBCdrField, pWorkdoc As
SCBCdrWorkdoc)
Dim cindex as long, count as long, id as long
'add a new candidate to the field
if pWorkdoc.Wordcount > 42 then 'use the 42th word as new
candidate
count = 1 'wordcount of new candidate
id = 0 'rule-id for later backtracing
pField.AddCandidate 42, count, id, cindex
'cindex is the new index of the candidate
end if
End Sub

WordSegmentationChars

Description Sets / returns a string which contains the characters used for the
segmentation of Words.

Syntax WordSegmentationChars As String (read/write)

Worktext

Description Provides access to the raw OCR results represented by the
SCBCroWorktext object.

Syntax Worktext As ISCBCroWorktext (read only)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 74 of 207

2.2 SCBCdrFields

2.2.1. Description
Collection of all Field objects contained in the current WorkDoc object.

2.2.2. Methods and Properties

Add

Description Adds a new Field with the specified name to the Field Collection.

Syntax Add (NewItem As ISCBCdrField, ItemName As String) As
Long

Parameters NewItem: [in] Pointer to a SCBCdrField object which should
be added to the Collection.

 ItemName: [in] Name of the Field item inside the Collection.
This name must be used to access the item inside
the Collection.

Clear

Description Removes all items from the Collection and releases their reference
count.

Syntax Clear ()

Collection

Description Returns the Collection which is internally used to store the Fields.

Syntax Collection As ISCBCroCollection (read only)

Count

Description Returns the number of items within the Field Collection.

Syntax Count As Long (read only)

Example Dim cindex as long, count as long, id as long

Item

Description These read-only properties return a specified item from the
Collection. The Item property is the default property of the

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 75 of 207

ISCBCdrFields Collection.

Syntax Item (Index As Variant) As ISCBCdrField (read only)

Parameters Index: The index can either be a long value specifying the
index within the collection, valid range from 1 to Count,
or a string specifying the item by name.

ItemByIndex

Description Returns an item from the Collection specified by index.

Syntax ItemByIndex (Index As Long) As ISCBCdrField (read only)

Parameters Index: Index of the item to retrieve from the Collection, valid
range from 1 to Count

Example strClassName = theProject.AllClasses.ItemByIndex(intClass).Name

ItemByName

Description Returns the Field from the Collection by the specified Field name.

Syntax ItemByName (Name As String) As ISCBCdrField (read only)

Parameters Name: [in] Name of the item to retrieve from the Collection.

Example Private Sub Document_FocusChanged(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, ByVal Reason As
SCBCdrPROJLib.CdrFocusChangeReason, ByVal OldFieldIndex As Long,
pNewFieldIndex As Long)

If
pWorkdoc.Fields.ItemByName("InteractiveTableExtractionAllowed").Text
= "No" Then

Project.AllClasses.ItemByName(pWorkdoc.DocClassName).Fields.ItemByNam
e("LineItems").AllowInteractiveExtraction = False

Else

Project.AllClasses.ItemByName(pWorkdoc.DocClassName).Fields.ItemByNam
e("LineItems").AllowInteractiveExtraction = True

End If

End Sub

ItemExists

Description Returns TRUE if an item with the specified name exists inside the
Collection or FALSE is returned.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 76 of 207

Syntax ItemExists (Name As String) As Boolean

Parameters Name: Name of item to search for.

ItemIndex

Description The index of an item specified by name is returned.

Syntax ItemIndex (Name As String) As Long (read only)

Parameters Name: Name specifying an item in the Collection.

ItemName

Description The name of an item is returned specified by index.

Syntax ItemName (Index As Long) As String (read only)

Parameters Index: Index specifying an item in the collection, valid
range from 1 to Count

MoveItem

Description Moves an item specified by OldIndex from OldIndex to NewIndex.

Syntax MoveItem (OldIndex As Long, NewIndex As Long)

Parameters OldIndex: [in] Index of item to remove valid range from 1 to
Count.

 NewIndex: [in] New index of the item after the move has
occurred, valid range from 1 to Count.

Remove

Description Removes the specified item from the Collection and releases the
reference count to this item.

Syntax Remove (ItemName As String)

Parameters ItemName: [in] Name of item to remove.

RemoveByIndex

Description Removes the specified item from the Collection and releases the

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 77 of 207

reference count to this item.

Syntax RemoveByIndex (Index As Long)

Parameters Index: [in] Index of item to remove, valid range from 1 to
Count

Rename

Description Renames the item specified by Oldname from OldName to
NewName.

Syntax Rename (OldName As String, NewName As String)

Parameters OldName: [in] Name of item to rename

 NewName: [in] New name of item in Collection.

Tag

Description To store a variant for each item of the Collection.

Syntax Tag (Index As Long) As Variant (read/write)

Parameters Index: Specifies the item index, valid range from 1 to
Count.

2.3 SCBCdrField

2.3.1. Description
This object contains the data that are evaluated and that should be extracted from the
Document.

2.3.2. Type Definitions

CDRFieldState
Enumeration containing the state of the Field.

Available Types Description
CDRFieldStateAnalyzed Field is analyzed

DRFieldStateEvaluated Field is evaluated

CDRFieldStateFormated Field is formatted

CDRFieldStateReset Initial state of a Field

CDRFieldStateValid Validity state of Field

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 78 of 207

2.3.3. Methods and Properties

ActiveTableIndex

Description Reads the position where the Table is activated or activate the Table
at given zero-based index.

Syntax ActiveTableIndex As Long (read/write)

Example 'Initializes table and field references

Set theEmptyTable = _

pWorkdoc.Fields("EmptyTable").Table(pWorkdoc.Fields("EmptyTable").Act
iveTableIndex)

Set theEmptyTableField = pWorkdoc.Fields("EmptyTable")

AddCandidate

Description Adds a new Candidate to the Field based on the specified Word ID.

Syntax AddCandidate (WordNr As Long, WordCount As Long,
FilterID As Long, pIndex As Long)

Parameters WordNr: Specifies the Word index within the Word array of
the Workdoc. Must be within 0 to
pWorkdoc.WordCount - 1.

 WordCount: [in] Specifies the number of Words to use for the
Candidate. If WordCount is greater than 1 the
second word for the Candidate is defined with
WordNr + 1, the third with WordNr + 2.

 FilterID: [in] This parameter can be used to store a filter
identifier inside the Candidate. So later it is
possible to see which filter expression has created
the Candidate.

 pIndex:

[out] Returns the index of the new Candidate within
the Candidate array.

Example

Private Sub MyField_PostAnalysis(pField As SCBCdrField, pWorkdoc As
SCBCdrWorkdoc)

Dim cindex as long, count as long, id as long

'add a new candidate to the field

if pWorkdoc.Wordcount > 42 then

‘use the 42th word as new candidate

count = 1 'wordcount of new candidate

id = 0 'rule-id for later backtracing

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 79 of 207

pField.AddCandidate 42, count, id, cindex

'cindex is the new index of the candidate

end if

End Sub

AddCandidate2

Description Adds a new Candidate to the Field based on the specified Worktext

Syntax AddCandidate2 (pWorktext As ISCBCroWorktext, pIndex As
Long)

Parameters pWorktext: [in] Must be an initialized Worktext as it was
created calling a SCBCroZone.Recognize
method.

 pIndex: [out] Returns the index of the new Candidate
within the Candidate array.

AddTable

Description Adds a Table into the Table array of this Field.

Syntax AddTable ()

BoostDigitsOnly

Description Sets/returns whether only digits should be boosted.

Syntax BoostDigitsOnly as Boolean

BoostField

Description Sets/returns whether a field should be boosted.

Syntax BoostField as Boolean

Candidate

Description Returns a Candidate of the Field. Returns the number of Candidates

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 80 of 207

of the Field

Syntax Candidate (index As Long) As ISCBCdrCandidate (read
only)

Parameters Index: Index of the Candidate. Valid indices are 0 to
CandidateCount-1

 eCount: CandidateCount As Long (read only)

CandidateByFilterID

Description Finds the first candidate by specified filter ID or creates a new one if
no such candidate found.

Syntax CandidateByFilterID (ByVal FilterID As Long, ByVal
CreateNew As Boolean, pCandidateIndex As Long) as
ISCBCdrCandidate

Parameters Filter ID: ByVal FilterID As Long

 e ByVal CreateNew As Boolean

 pCandidateIndex As Long

CandidateCount

Description Returns the number of candidates for a field.

Syntax CandidateCount As Long

Changed

Description Returns the changed state of the Field. If the changed state
becomes TRUE the field must be validated even if it was already
validated before.

Syntax Changed As Boolean (read/write)

CustomDetailsString

Description Sets / returns CustomDetailsString

Syntax CustomDetails as String

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 81 of 207

CustomStatusLong

Description Sets / returns CustomStatusLong

Syntax CustomStatus As Long

DeleteLine

Description Deletes a line from specific index position.

Syntax DeleteLine (LineIndex As Long)

Parameters LineIndex: Index of Line, zero-based indexing

Example ‘This loop deletes the existing line objects in the field:

Dim lngLineCounter As Long

For lngLineCounter = (pField.LineCount - 1) To 0 Step -1

pField.DeleteLine(lngLineCounter)

Next

‘Then add as many lines as required and populate with the required
string:

pField.InsertLine(0)

pField.Line(0)="Line1"

pField.InsertLine(1)

pField.Line(1)="Line2"

DeleteTable

Description Deletes a Table from the Table array of this Field.

Syntax DeleteTable (TableIndex As Long)

Parameters TableIndex: Zero-based Index of the Table

ErrorDescription

Description Stores the reason if a script validation could not be performed
successfully.

Syntax ErrorDescription As String (read/write)

Example

Private Sub Number_Validate(pField As SCBCdrField, pWorkdoc As

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 82 of 207

SCBCdrWorkdoc, pValid As Boolean)

if pValid = FALSE then

‘Standard validation returns invalid, stop here

exit sub

end if

‘Perform additional check for number format

if IsValidNumber(pField) = FALSE then

pValid = FALSE

pField.ErrorDescription = “Field is not a valid number”

end if

End Sub

ExternalText

Description Sets / returns external text

Syntax ExternalText As String

FieldID

Description This read-only property returns the internally used FieldID.

Syntax FieldID As Long (read only)

FieldState

Description Sets / returns the current execution state of the Field.

Syntax FieldState As CDRFieldState (read/write)

Example

Private Sub Document_PreExtract(pWorkdoc As SCBCdrWorkdoc)

Dim MyResult as string

MyResult = DoSomeMagic(pWorkdoc)

if (len(MyResult) > 0) then

'assign result to a single field

pWorkdoc.Fields(“Number”) = MyResult;

'skip defined analysis and evaluation methods

pWorkdoc.Fields(“Number”).FieldState = CDRFieldStateEvaluated

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 83 of 207

end if

end Sub

FieldVersion

Description Returns the field data of the specified version.

Syntax FieldVersion As String (ByVal index As Long)

Parameters Index: ByVal index As Long

FindCandidate

Description Searches inside the list of Candidates if there is a Candidate based
on the specified WordID.

Syntax FindCandidate (WordID As Long, pCandIndex As Long)

Parameters WordID: [in] Specifies a WordID inside the Word array of
the Workdoc searched for.

 pCandIndex: [out] Contains the index of the Candidate if
someone was found or -1 if no Candidate was
found.

FindCandidateByPos

Description This is a method to find a candidate by its position.

Syntax FindCandidateByPos (ByVal Page as Long, ByVal Param1 as
Long, ByVal Left as Long, ByVal Top as Long, ByVal
Width as Long, By Val Height as Long, CandidateIndex as
Long) as ISCBCdrCandidate

Parameters ByVal Page: Long

 ByVal Param1: Long

 ByVal Left: Long

 ByVal Top: Long

 ByVal Width: Long

 ByVal Height: Long

 CandidateIndex Long

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 84 of 207

:

FormattedText

Description This property cannot be used. The contents can be formatted via the
FormatForExport field event. For details see section 1.4.4
FormatForExport.

GetFirstCandidatePropsByPage

Description This is a method to get the first candidate’s properties by page.

Syntax CandidatePropsByPage (ByVal Page As Long, ByVal Param1
As Long, ByVal Left As Long, ByVal Top As Long, ByVal
Width As Long, ByVal Height As Long, ByVal Text As
String, ByVal Weight As Double) as Long

Parameters CandidateProps: ByVal Page As Long

ByVal Param1 As Long

ByVal Left As Long

ByVal Top As Long

ByVal Width As Long

ByVal Height As Long

ByVal Text As String

ByVal Weight As Double

GetNextCandidatePropsByPage

Description This is a method to get the next candidate’s properties by page.

Syntax CandidatePropsByPage (ByVal Left As Long, ByVal Top As
Long, ByVal Width As Long, ByVal Height As Long, ByVal
Text As String, ByVal Weight As Double) as Long

Parameters CandidateProps: ByVal Left As Long

ByVal Top As Long

ByVal Width As Long

ByVal Height As Long

ByVal Text As String

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 85 of 207

ByVal Weight As Double

GetUniqueEntryId

Description Retrieves other column values for the specified pool entry.

Syntax GetUniqueEntryId (IdHigh As Long, IdLow As Long)

Parameters IdHigh: [out] Upper part of the 64-bit unique ID.

 IdLow: [out] Lower part of the 64-bit unique ID.

Example Public Function GetASSAInfo (pworkdoc as SCBCdrPROJLib.SCBCdrWorkdoc,

cand as SCBCdrWkDocLib.SCBCdrCandidate) As String

'Function input: Workdoc, ASSA Candidate

Dim lNumericIdHigh As Long

Dim lNumericIdLow As Long

GetASSAInfo=””

If cand.IsIDAlphNum = True Then

GetASSAInfo = cand.UniqueID

Else

GetASSAInfo = Cand.GetUniqueEntryID(lNumericIDhigh, lnumericIdLow)

End If

End Function

Height

Description Sets / returns the height of the Field in pixel.

Syntax Height As Long (read/write)

Example 'copy the positional information to the new object

pCopyField.Height = pField.Height

InsertLine

Description Insert a line at given LineIndex in a Field.

Syntax InsertLine (LineIndex As Long)

Parameters LineIndex: Zero-based LineIndex at which position
line has to be inserted.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 86 of 207

Example The following script code should be used when attempting to insert
new lines to a field in custom script:

'This loop deletes the existing line objects in the field:

Dim lngLineCounter As Long

For lngLineCounter = (pField.LineCount - 1) To 0 Step -1

pField.DeleteLine(lngLineCounter)

Next

'Then add as many lines as required and populate with the required

string:

pField.InsertLine(0)

pField.Line(0)="Line1"

pField.InsertLine(1)

pField.Line(1)="Line2"

Attempting to use pfield.text="Line1" + VbCrLf & "Line2" will not

work.

IsIDAlphNum

Description Sets / returns whether a unique ID is alphanumeric.

Syntax IsIDAlphNum As Boolean

LastModificationEndDate

Description Sets / returns LastModificationEndDate.

Syntax LastModificationEndDate As Date

LastModificationEndDateAsFileTimeUtc

Description Sets / returns the height of the Field in pixel.

Syntax Height As Long (read/write)

Example 'copy the positional information to the new object

pCopyField.Height = pField.Height

Left

Description Sets / returns the left border of the Field in pixel.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 87 of 207

Syntax Left As Long (read/write)

Line

Description Sets / returns the text of a single line.

Syntax Line (index As Long) As String (read/write)

Parameters Index: Index of the line must be from 0 to LineCount-1.

LineCaption

Description If a Field has more than one line, it is possible to assign a caption to
each line to provide information about the content of the line.

Syntax LineCaption (index As Long) As String (read/write)

Parameters Index: Index of the line, must be from 0 to LineCount-1

LineCount

Description Returns the number of lines of a multi-line header field. This equals
the number of Worktext objects (In Perceptive Intelligent Capture,
each line of a multi-line header field is represented by a separate
individual Worktext object).

Can also be used to set the number of lines of a Field.

Syntax LineCount As Long (read/write)

LineWorktext

Description Provides access to the Worktext of each single line of the Field. The
line index corresponds to the Worktext object.

Syntax LineWorktext (index As Long) As ISCBCroWorktext
(read/write)

Parameters Index: Index of the line, must be from 0 to LineCount-1.

MultilineText

Description Sets or returns multiline text for all lines at once that are separated
with line break chars (same as "vbCrLf" in WinWrap script).

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 88 of 207

Syntax MultilineText As String (read/write)

Name

Description Returns the name of the Field as it was defined within the design
environment.

Syntax Name As String (read only)

PageNr

Description Sets / returns the DocPage number where the Field is located.

Syntax PageNr As Long (read/write)

PutUniqueEntryId

Description Sets the unique ID (64 bit) for the field content from associative
search pool.

Syntax PutUniqueEntryId (IdHigh As Long, IdLow As Long)

Parameters IdHigh: [in] Upper part of the 64-bit unique ID.

 IdLow: [in] Lower part of the 64-bit unique ID.

Example Candidate As long

Dim lngUniqueID As Long

lngUniqueID =
pWorkdoc.Fields("VendorASSA").Candidate(intNewCandidate).FilterID

pWorkdoc.Fields("VendorASSA").PutUniqueEntryId(0, lngUniqueID)

RemoveCandidate

Description Removes a Candidate from the Candidate array.

Syntax RemoveCandidate (CandIndex As Long)

Parameters CandIndex: Zero-based Candidate Index.

SkipTrainingWithEngine

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 89 of 207

Description Identifies whether the specified trainable engine has to skip this field
in the training process.

Syntax SkipTrainingWithEngine (bstrEngineName As String) As
Boolean (read/write)

Parameters bstrEngineName: Name of the extraction engine.

Table

Description Retrieves the Table object from an array of Tables of this Field at a
specified index.

Syntax Table (index As Long) As ISCBCdrTable (read only)

Parameters Index: Position of a Table in an array of Tables, zero-based
indexing

TableCount

Description Returns the number of Tables according to the Field.

Syntax TableCount As Long (read only)

Tag

Description To store an arbitrary variant in the Field.

Syntax Tag As Variant (read/write)

Text

Description To read and write the text of the Field. In case of multi-line Fields,
the Text property refers to all lines at once as one single string,
combining lines with spaces in between.

Syntax Text As String (read/write)

Top

Description Sets / returns the top border of the Field in pixel.

Syntax Top As Long (read/write)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 90 of 207

TrainedWithEngine

Description This property indicates whether this field is trained with the specified
engine.

Syntax TrainedWithEngine (bstrEngineName As String) As Boolean
(read only)

Parameters bstrEngineName: Name of the Engine

Valid

Description Sets / returns the valid state of the Field.

Syntax Valid As Boolean (read/write)

Width

Description Sets / returns the width of the Field in pixel.

Syntax Width As Long (read/write)

Worktext

Description Provides access to the Worktext of the Field. In case of multi-line
Fields, the Worktext property refers to the first Worktext the header
field consists of, which represents the first line of the multi-line
header field.

Syntax Worktext As ISCBCroWorktext (read/write)

2.4 SCBCdrCandidate

2.4.1. Description
Cedar Candidates are generated during the analysis step and are representing possible
results of a Field.

2.4.2. Methods and Properties

Attractor

Description Returns the attractor of the Candidate by a zero-based index.

Syntax Attractor (index As Long) As ISCBCdrAttractor (read

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 91 of 207

only)

Parameters Index: Specifies the index in the attractor array, must be
between 0 and AttractorCount - 1.

AttractorCount

Description Returns the number of attractors for this Candidate.

Syntax AttractorCount As Long (read only)

CopyToField

Description To copy all required properties from the Candidate to the Field
result.

Syntax CopyToField (pField As ISCBCdrField)

Parameters pField: Reference to the Field containing the Candidate.
States which field should get the values from the
Candidate.

FilterID

Description This is the FilterID value as it was specified by the AddCandidate
method of the Field.

Syntax FilterID As Long (read only)

Example Candidate As long

Dim lngUniqueID As Long

lngUniqueID =
pWorkdoc.Fields("VendorASSA").Candidate(intNewCandidate).FilterID

pWorkdoc.Fields("VendorASSA").PutUniqueEntryId(0, lngUniqueID)

FormatConfidence

Description Sets / returns the confidence of the string match algorithm
performed by the format search engine that has created the
Candidate.

Syntax FormatConfidence As Double (read/write)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 92 of 207

Height

Description Returns the height of the Candidate in pixel.

Syntax Height As Long (read only)

KeepSpaces

Description It specifies if the text created from several Words should keep the
spaces between these Words or not.

Syntax KeepSpaces As Boolean (read/write)

Left

Description Returns the left border of the Candidate in pixel.

Syntax Left As Long (read only)

Line

Description Returns the text of a single line. A Candidate can consist of one or
more lines.

Syntax Line (index As Long) As String (read only)

Parameters Index: Index of the Line, must be from 0 to LineCount-1.

LineCaption

Description If a Candidate has more than one line, it is possible to assign a
caption to each line to provide information about the content of the
line.

Syntax LineCaption (index As Long) As String (read/write)

Parameters Index: Index of the line, must be from 0 to LineCount – 1

LineCount

Description Returns the number of lines of the Candidate or can be used to set
the number of lines of a Field.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 93 of 207

Syntax LineCount As Long (read/write)

LineWordCount

Description Returns number of words of the specified line.

Syntax LineWordCount (index As Long) As Long (read only)

Parameters Index: Index of the line.

LineWordID

Description Returns the Word ID of the specified Line and Word index.

Syntax LineWordID (LineIndex As Long, WordIndex As Long) As
Long (read only)

Parameters LineIndex: Index of the Line, must be from 0 to LineCount-1.

 WordIndex: Index of the Word within the Line.

LineWorktext

Description Returns the Worktext object of the single line specified by the zero-
based index within a multi-line Field

Syntax LineWorktext (index As Long) As ISCBCroWorktext
(read/write)

Parameters Index: Zero-based index of single line

PageNr

Description Returns the DocPage number where the Candidate is located.

Syntax PageNr As Long (read only)

Example Private Sub RestoreFieldPosition(pField As SCBCdrField, pCopyField As
SCBCdrField)

'write the saved fields positional data back to the original field

pField.PageNr = pCopyField.PageNr

End Sub

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 94 of 207

RemoveAttractor

Description Removes the attractor specified by index.

Syntax RemoveAttractor (AttractorIndex As Long)

Parameters AttractorIndex: Index of attractor to be removed, valid range
from 0 to AttractorCount-1.

Text

Description Returns the text of the Candidate.

Syntax Text As String (read only)

Top

Description Returns the top border of the Candidate in pixel.

Syntax Top As Long (read only)

Weight

Description Sets / returns the result of the evaluation which is between 0 and 1.

Note: the value can be higher than 1 (1 equals 100 %) in case the
sum of different single candidate weights resulting from position and
environment of the candidate exceeds 100 %. Candidates with more
than 100 % will also be accounted for selection.

Syntax Weight As Double (read/write)

Width

Description Returns the width of the Candidate in pixel.

Syntax Width As Long (read only)

WordCount

Description Returns the Word count of the Candidate.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 95 of 207

Syntax WordCount As Long (read only)

WordID

Description Returns the Word ID of the specified Word index within the first line.

Syntax WordID (index As Long) As Long (read only)

Parameters Index: Zero-based index of the Word within the line.

Worktext

Description Returns the Worktext object of the first line.

Syntax Worktext As ISCBCroWorktext (read only)

2.5 SCBCdrTable

2.5.1. Descriptions
The Cedar Table object represents a logical Table in a Document which is assigned to a
Cedar Field of a Workdoc.

2.5.2. Type Definitions

CDRTableHighlightMode
Enumeration containing the highlighting mode of a Table.

Available Types Description
CDRTableHighlightAllCells Highlight all cells of Table

CDRTableHighlightAllColumns Highlight all columns of Table

CDRTableHighlightAllColumnsAdvanced Advanced highlighting mode for both
mapped and unmapped columns

CDRTableHighlightAllRows Highlight all rows of Table

CDRTableHighlightCell Highlight particular cell (as set by
HighlightColumnIndex and
HighlightRowIndex)

CDRTableHighlightColumn Highlight column (as set by
HighlightColumnIndex)

CDRTableHighlightNothing Highlight nothing

CDRTableHighlightRow Highlight row (as set by

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 96 of 207

HighlightRowIndex)

CDRTableHighlightTable Highlight whole Table

CDRLocation
Enumeration containing the location of a row, column or a cell in a Table.

Available Types Description
CDRLocationBottom Bottom corner coordinate
CDRLocationLeft Left corner coordinate
CDRLocationRight Right corner coordinate

CDRLocationTop Top corner coordinate

2.5.3. Methods and Properties

AddColumn

Description Adds a new column to a Table. Returns the index of the new
column (zero-based).

Syntax AddColumn (ColumnName As String) As Long

Parameters ColumnName: [in] Name of column

AddRow

Description Adds a new row to a Table. Returns the index of the new row
(zero-based).

Syntax As Long

AddUMColumn

Description Adds a new unmapped column to a Table. Returns the index of
the new unmapped column.

Syntax AddUMColumn (pUMColumnIndex As Long)

Parameters pUMColumnIndex: The method returns the zero-based
index of the new column to this
parameter.

AppendRows

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 97 of 207

Description Appends new rows over the specified range within the document.

Syntax AppendRows (top As Long, height As Long, PageNumber
As Long)

Parameters Top: Top of region used for creation or new
rows

 Height: Height of region used for creation or new
rows

 PageNumber: DocpPage number of region

CellColor

Description Sets / returns the color of the Table cell.

Syntax CellColor (IsValid As Boolean) As OLE_COLOR
(read/write)

Parameters IsValid: Flag indicating if color refers to valid or
invalid Table cells

CellLocation

Description Sets / returns the location of the Table cell.

Syntax CellLocation (Column As Variant, RowIndex As Long,
Location As CDRLocation)
As Long (read/write)

Parameters Column: Zero-based index or name of column

 RowIndex: Zero-based index of row

 Location: Location parameter

CellText

Description Sets / returns the text of the Table cell

Syntax CellText (Column As Variant, RowIndex As Long) As
String (read/write)

Parameters Column: Zero-based index or name of column

 RowIndex: Zero-based index of row

Example

Private Sub MyTableField_ValidateCell(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 98 of 207

SCBCdrPROJLib.SCBCdrWorkdoc, ByVal Row As Long, ByVal Column As
Long, pValid As Boolean)

Select Case Column

Case 0:

'check date in column 0

if CheckDate(pTable.CellText(Column, Row)) = FALSE then

pValid = FALSE

pTable. CellValidationErrorDescription(Column, Row) = “Invalid
date”

end if

Case 2:

'check order number in column 2

if CheckOrderNumber(pTable.CellText(Column, Row)) = FALSE then

pValid = FALSE

pTable. CellValidationErrorDescription(Column, Row) = “Invalid
order number”

end if

End Select

End Sub

CellValid

Description Sets / returns the validity flag of the Table cell.

Syntax CellValid (Column As Variant, RowIndex As Long) As
Boolean (read/write)

Parameters Column: Zero-based index of name of column

 RowIndex: Zero-based index of row

Example ' Makes table object valid

theEmptyTable.CellValid(0,0) = True

theEmptyTable.CellValid(1,0) = True

CellValidationErrorDescription

Description Sets / returns the ErrorDescription for the cell validation.

Syntax CellValidationErrorDescription (Column As Variant,
RowIndex As Long) As String (read/write)

Parameters Column: Zero-based index or name of column

 RowIndex: Zero-based index of row

Example

Private Sub MyTableField_ValidateCell(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, ByVal Row As Long, ByVal Column As
Long, pValid As Boolean)

Select Case Column

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 99 of 207

Case 0:

'check date in column 0

if CheckDate(pTable.CellText(Column, Row)) = FALSE then

pValid = FALSE

pTable. CellValidationErrorDescription(Column, Row) = “Invalid
date”

end if

Case 2:

'check order number in column 2

if CheckOrderNumber(pTable.CellText(Column, Row)) = FALSE then

pValid = FALSE

pTable. CellValidationErrorDescription(Column, Row) = “Invalid
order number”

end if

End Select

End Sub

CellVisible

Description Sets / returns Visible flag of the Table cell (currently not used).

Syntax CellVisible (Column As Variant, RowIndex As Long) As
Boolean (read/write)

Parameters Column: Zero-based index of name of column

 RowIndex: Zero-based index of row

CellWorktext

Description Sets / returns the Worktext object of the cell.

Syntax CellWorktext (Column As Variant, RowIndex As Long) As
ISCBCroWorktext (read/write)

Parameters Column: Zero-based index or name of column

 RowIndex: Zero-based index of row

CellWorktextChanged

Description Sets / returns a flag indicating whether the cell Worktext has
changed.

Syntax CellWorktextChanged (Column As Variant, RowIndex As
Long) As Boolean (read/write)

Parameters Column: Zero-based index or name of column

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 100 of 207

 RowIndex: Zero-based index of row

Clear

Description Clears the content of the Table (i.e. removes all columns and all
rows and resets all Table attributes).

Syntax Clear ()

ClearColumn

Description Clears the content of an existing column.

Syntax ClearColumn (Column As Variant)

Parameters Column: Zero-based index or name of column

ClearRow

Description Clears the content of an existing row.

Syntax ClearRow (RowIndex As Long)

Parameters RowIndex: Zero-based index of row.

ClearUMColumn

Description Clears the content of an unmapped column.

Syntax ClearUMColumn (UMColumnIndex As Long)

Parameters UMColumnIndex: Zero-based index of unmapped column
to be cleared.

ColumnColor

Description Sets / returns the color of a column.

Syntax ColumnColor (IsValid As Boolean) As OLE_COLOR
(read/write)

Parameters IsValid: Flag indicating if color refers to valid or
invalid columns

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 101 of 207

ColumnCount

Description Returns the number of the columns.

Syntax ColumnCount As Long (read only)

ColumnExportEnable

Description Sets / returns the ExportEnable flag of a column.

Syntax ColumnExportEnable (Column As Variant) As Boolean
(read/write)

Parameters Column: Zero-based index or name of column

ColumnIndex

Description Returns the column index for the name of a column.

Syntax ColumnIndex (ColumnName As String) As Long (read
only)

Parameters ColumnName: name of the column

ColumnLabelLocation

Description Sets / returns the location of a column label (referring to first label
line in case of multi-page Tables).

Syntax ColumnLabelLocation (Column As Variant, Location As
CDRLocation) As Long (read/write)

Parameters Column: Zero-based index or name of column

 Location: Location parameter

ColumnLabelText

Description Sets / returns the column label.

Syntax ColumnLabelText (Column As Variant) As String
(read/write)

Parameters Column: Zero-based index or name of column

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 102 of 207

ColumnLocation

Description Sets / returns the location of the column.

Syntax ColumnLocation (Column As Variant, PageNr As Long,
Location As CDRLocation)
As Long (read/write)

Parameters Column: Zero-based index or name of column

 PageNr: DocPage number

 Location: Location parameter

ColumnMapped

Description Sets / returns a flag indicating whether a column has been
mapped.

Syntax ColumnMapped (Column As Variant) As Boolean
(read/write)

Parameters Column: Zero-based index or name of column

ColumnName

Description Returns the name of a column.

Syntax ColumnName (ColumnIndex As Long) As String (read
only)

Parameters ColumnIndex: Zero-based Index of column

ColumnValid

Description Sets / returns a validity flag for a column. If the flag is set to false
the in-/valid state of the table field will not be changed
automatically.

Syntax ColumnValid (Column As Variant) As Boolean
(read/write)

Parameters Column: Zero-based index or name of column

ColumnVisible

Description Sets / returns the visible flag of a column. (affects visibility of

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 103 of 207

column in Verifier).

Syntax ColumnVisible (Column As Variant) As Boolean
(read/write)

Parameters Column: Zero-based index or name of column

Example theTableSettings.ColumnVisible(2) = True 'Set the Column

visible to True to show, False to hide.

DeleteColumn

Description Deletes a column specified by its name or by index.

Syntax DeleteColumn (Column As Variant)

Parameters Column: Zero-based index or name of column

DeleteRow

Description Deletes a row specified by index.

Syntax DeleteRow (RowIndex As Long)

Parameters RowIndex: Zero-based index of row

DeleteUMColumn

Description Deletes an unmapped column specified by index.

Syntax DeleteUMColumn (UMColumnIndex As Long)

Parameters UMColumnIndex: Zero-based index of unmapped column
to be deleted

FieldName

Description Sets / returns the name of the CdrField to which the CdrTable
object belongs to.

Syntax FieldName As String (read/write)

FillColumn

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 104 of 207

Description Fills the column with Words of specified area. If the Table is
empty, each text line will be assigned to a Table row. Otherwise
the existing row segmentation will be used.

Syntax FillColumn (left As Long, top As Long, width As
Long, height As Long,
PageNumber As Long, Column As Variant)

Parameters Left: Left position of area in pixel

 Top: Top of area in pixel

 Width: Width of area in pixel

 Height: Height of area in pixel

 PageNumber: DocPage number of area

 Column: Zero-based index or name of destination
column

FooterLocation

Description Sets / returns the location of the Table footer.

Syntax FooterLocation (Location As CDRLocation) As Long
(read/write)

Parameters Location: Location parameter

FooterPageNr

Description Sets / returns the DocPage number of the Table footer.

Syntax FooterPageNr As Long (read/write)

FooterText

Description Sets / returns the text of the Table footer.

Syntax FooterText As String (read/write)

HeaderLocation

Description Sets / returns the location of the Table header.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 105 of 207

Syntax HeaderLocation (Location As CDRLocation) As Long
(read/write)

Parameters Location: Location parameter

HeaderPageNr

Description Sets / returns the DocPage number of the Table header.

Syntax HeaderPageNr As Long (read/write)

HeaderText

Description Sets / returns the text of the Table header.

Syntax HeaderText As String (read/write)

HighlightColumnIndex

Description Sets / returns the index of the column to be highlighted.

Syntax HighlightColumnIndex As Long (read/write)

HighlightMode

Description Sets / returns HighlightMode of Table.
CDRTableHighlightTable: Highlights whole Table
CDRTableHighlightAllColumns: Highlights all columns

CDRTableHighlightAllRows: Highlights all rows
CDRTableHighlightAllCells: Highlights all cells
CDRTableHighlightColumn: Highlights single column (as

set by HighlightColumnIndex)
CDRTableHighlightRow: Highlights single row (as set

by HighlightRowIndex)
CDRTableHighlightCell: Highlights single cell (as set

by HighlightColumnIndex and
HighlightRowIndex)

Syntax HighlightMode As CDRTableHighlightMode (read/write)

HighlightRowIndex

Description Sets / returns the index of the row to be highlighted.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 106 of 207

Syntax HighlightRowIndex As Long (read/write)

HighlightUMColumnIndex

Description Sets / returns the zero-based index of an unmapped column to
be highlighted.

Syntax HighlightUMColumnIndex As Long (read/write)

InsertColumn

Description Inserts a new column after by ColumnIndex specified column.

Syntax InsertColumn (ColumnIndex As Long, ColumnName As
String)

Parameters ColumnIndex: Zero-based index of existing column,
behind which new column is to be
inserted.

 ColumnName: Name of new column

InsertRow

Description Inserts a new row after specified RowIndex.

Syntax InsertRow (RowIndex As Long)

Parameters RowIndex: Zero-based index of existing row, below
which new row is to be inserted.

InsertUMColumn

Description Inserts new unmapped column.

Syntax InsertUMColumn (UMColumnIndex As Long)

Parameters UMColumnIndex: Zero-based index of new column.

LabellinePageNr

Description Sets / returns the DocPage number of the label line (first
occurrence in case of multi-page Tables).

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 107 of 207

Syntax LabellinePageNr As Long (read/write)

LocationExplicit

Description Sets / returns LocationExplicit flag.

Syntax LocationExplicit As Boolean (read/write)

MapColumn

Description Maps an unmapped column, i.e. transfers content of unmapped
source column to specified target column.

Syntax MapColumn (UMColumnIndex As Long, Column As
Variant)

Parameters UMColumnIndex: Zero-based index of unmapped source
column

 Column: Zero-based index or name of destination
column

MergeRows

Description Merges two rows specified by two indices.

Syntax MergeRows (RowIndex1 As Long, RowIndex2 As Long)

Parameters RowIndex1: Zero-based index of row 1

 RowIndex2: Zero-based index of row 2

RemoveAllColumns

Description This method removes all mapped table columns.

Syntax RemoveAllColumns ()

RemoveAllRows

Description This method removes all table rows.

Syntax RemoveAllRows ()

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 108 of 207

RemoveAllUMColumns

Description This method removes all unmapped table columns.

Syntax RemoveAllUMColumns ()

RowColor

Description Sets / returns the color of the row.

Syntax RowColor (IsValid As Boolean) As OLE_COLOR
(read/write)

Parameters IsValid: Flag indicating if color refers to valid or
invalid rows

RowCount

Description Returns the number of the rows.

Syntax RowCount As Long (read only)

RowLocation

Description Sets / returns the location of the row.

Syntax RowLocation (RowIndex As Long, Location As
CDRLocation) As Long (read/write)

Parameters RowIndex: Zero-based index of row

 Location: Location parameter

RowNumber

Description This property sets or returns the actual number of row.

Syntax RowNumber (RowIndex As Long) As Long (read/write)

Parameters RowIndex: Zero-based index of row

Example

Private Sub Tabelle_ValidateCell(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As_

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 109 of 207

SCBCdrPROJLib.SCBCdrWorkdoc, ByVal Row As Long, ByVal Column As
Long, pValid As Boolean)

Dim nCurrentRow, nRow, nLine As Integer

While (nLine < pTable.RowCount) And (nRow = nCurrentRow)

nRow = pTable.RowNumber(nLine)

nLine = nLine + 1

Wend

End Sub

RowPageNr

Description Sets / returns the DocPage number of a row.

Syntax RowPageNr (RowIndex As Long) As Long (read/write)

Parameters RowIndex: Zero-based index of row

RowValid

Description Sets / returns a validity flag of a row.

Syntax RowValid (RowIndex As Long) As Boolean (read/write)

Parameters RowIndex: Zero-based index of row

RowValidationErrorDescription

Description Sets / returns an ErrorDescription for a row validation.

Syntax RowValidationErrorDescription (RowIndex As Long) As
String (read/write)

Parameters RowIndex: Zero-based index of row

Example

Private Sub MyTableField_ValidateRow(pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, ByVal Row As Long, pValid As
Boolean)

'check if quantity * single price = total price

Dim quantity as long

Dim s_price as double, t_price as double

'all cells must already have a valid format

quantity = CLng(pTable.CellText(“Quantity”, Row))

s_price = CLng(pTable.CellText(“Single Price”, Row))

t_price = CLng(pTable.CellText(“Total Price”, Row))

if quantity*s_price = t_price then

pValid = TRUE

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 110 of 207

else

pValid = FALSE

pTable.RowValidationErrorDescription(Row) = “Invalid quantity or
amounts”

end if

End Sub

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 111 of 207

Significance

Description Sets / returns the significance for corresponding evaluation
property of the Table.

Syntax Significance (EvalPropIndex As Long) As Double
(read/write)

Parameters EvalPropIndex: Index of evaluation property:

1: percentage of required columns
identified

2: percentage of table columns
mapped

3: average percentage of elements
found in cell, for which element is
required

4: Average no-overlap to neighboring
cells (column view)

5: Average no-overlap to neighboring
cells (row view)

SwapColumns

Description Swaps the two specified columns.

Syntax SwapColumns (ColumnIndex1 As Long, ColumnIndex2 As
Long)

Parameters ColumnIndex1: Zero-based index of column 1

 ColumnIndex2: Zero-based index of column 2

TableColor

Description Sets / returns the color of the Table.

Syntax TableColor (IsValid As Boolean) As OLE_COLOR
(read/write)

Parameters IsValid: Flag indicating if color refers to a valid or
an invalid Table.

TableFirstPage

Description Sets / returns the DocPage number of the beginning of a Table
(must be set after creation of a Table, but cannot chang
afterwards).

Syntax TableFirstPage As Long (read/write)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 112 of 207

TableLastPage

Description Sets / returns the DocPage number of the end of a Table (must
be set after creation of a Table, and after assigning the first
DocPage, but must not change afterwards).

Syntax TableLastPage As Long (read/write)

TableLocation

Description Sets / returns the location of a Table.

Syntax TableLocation (PageNr As Long, Location As
CDRLocation) As Long (read/write)

Parameters PageNr: DocPage number

 Location: Location parameter

TableValid

Description Sets / returns a validity flag of the Table.

Syntax TableValid As Boolean (read/write)

TableValidationErrorDescription

Description Sets / returns an ErrorDescription for the Table validation.

Syntax TableValidationErrorDescription As String
(read/write)

Example

Private Sub MyTableField_ValidateTable (pTable As
SCBCdrPROJLib.SCBCdrTable, pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, pValid As Boolean)

'calculate the sum of all amounts and compare with the net
amount fields

Dim tablesum as double, netamount as double

Dim cellamount as double

Dim row as long

For row = 0 to pTabler.RowCount-1

cellamount = CLng(pTable.CellText(“Total Price”, Row))

tablesum = tablesum + cellamount

Next row

'now compare sum with the content of the net amount field

netamount = CDbl(pWorkdoc.Fields(“NetAmount”).Text

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 113 of 207

if netamount = tablesum then

pValid = TRUE

else

pValid = FALSE

pTable.TableValidationErrorDescription

= “Sum of table amounts and field net amount are different”

end if

End Sub

Tag

Description Sets / returns a tag associated with the Table.

Syntax Tag As String (read/write)

TotalSignificance

Description Sets / returns the total significance of the Table.

Syntax TotalSignificance As Double (read/write)

UMCellColor

Description Sets / returns the color of an unmapped Table cell.

Syntax UMCellColor As OLE_COLOR (read/write)

UMCellLocation

Description Sets / returns the location of an unmapped Table cell

Syntax UMCellLocation (UMColumnIndex As Long, RowIndex As
Long, Location As CDRLocation) As Long (read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

 RowIndex: Zero-based index of unmapped row

 Location: Location parameter

UMCellText

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 114 of 207

Description Sets / returns the text of an unmapped Table cell.

Syntax UMCellText (UMColumnIndex As Long, RowIndex As
Long) As String (read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

 RowIndex: Zero-based index of row

UMCellVisible

Description Sets / returns a Visible flag of an unmapped Table cell.

Syntax UMCellVisible (UMColumnIndex As Long, RowIndex As
Long) As Boolean (read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

 RowIndex: Zero-based index of row

UMCellWorktext

Description Sets / returns the Worktext Object of an unmapped cell.

Syntax UMCellWorktext (UMColumnIndex As Long, RowIndex As
Long) As ISCBCroWorktext (read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

 RowIndex: Zero-based index of row

UMColumnColor

Description Sets / returns the color of an unmapped column.

Syntax UMColumnColor As OLE_COLOR (read/write)

UMColumnCount

Description Returns the number of unmapped columns.

Syntax UMColumnCount As Long (read only)

UMColumnLabelLocation

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 115 of 207

Description Sets / returns the location of an unmapped column label.

Syntax UMColumnLabelLocation (UMColumnIndex As Long,
Location As CDRLocation)
As Long (read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

 Location: Location parameter

UMColumnLabelText

Description Sets / returns the text of label of an unmapped column.

Syntax UMColumnLabelText (UMColumnIndex As Long) As String
(read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

UMColumnLocation

Description Sets / returns the location of an unmapped column.

Syntax UMColumnLocation (UMColumnIndex As Long, PageNr As
Long, Location As CDRLocation) As Long (read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

 PageNr: DocPage number

 Location:

Location parameter

UMColumnVisible

Description Sets / returns a Visible flag of an unmapped column (currently
not used).

Syntax UMColumnVisible (UMColumnIndex As Long) As Boolean
(read/write)

Parameters UMColumnIndex: Zero-based index of unmapped column

UnMapColumn

Description Unmaps column, i.e. transfers content of specified source

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 116 of 207

column to new unmapped column.

Syntax UnMapColumn (Column As Variant) As Long

Parameters Column: Zero-based index or name of source
column

WeightingFactor

Description Sets / returns a Weighting Factor for a corresponding
evaluation property.

Syntax WeightingFactor (EvalPropIndex As Long) As Double
(read/write)

Parameters EvalPropIndex: Index of evaluation property:

1: percentage of required columns
identified

2: percentage of table columns
mapped

3: average percentage of
elements found in cell, for which
element is required

4: Average no-overlap to
neighboring cells (column view)

5: Average no-overlap to
neighboring cells (row view)

2.6 SCBCdrTextblock

2.6.1. Description
This object represents a TextBlock on a Document. A TextBlock may contain one or more
lines.

2.6.2. Methods and properties

Color

Description Sets / returns the color that will be used for TextBlock
highlighting.

Syntax Color As OLE_COLOR (read/write)

Height

Description Returns the height of the TextBlock in pixel.

Syntax Height As Long (read only)

Description Returns the left border of the TextBlock in pixel.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 117 of 207

Syntax Left As Long (read only)

PageNr

Description Returns the number of the DocPage where the TextBlock is
located.

Syntax PageNr As Long (read only)

Text

Description The whole text of the TextBlock is returned.

Syntax Text As String (read only)

Top

Description Returns the top border of the TextBlock in pixel.

Syntax Top As Long (read only)

Visible

Description Controls if the highlighted rectangle of the TextBlock should be
visible if the TextBlock highlighting is enabled.

Syntax Visible As Boolean (read/write)

Weight

Description This property returns the block weight.

Syntax Weight As Double (read only)

Width

Description The width of the TextBlock is returned in pixel.

Syntax Width As Long (read only)

WordCount

Description The number of Words belonging to the TextBlock is returned.

Syntax WordCount As Long (read only)

WordID

Description It can be used as index for the Word array of the Workdoc.

Syntax WordID (index As Long) As Long (read only)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 118 of 207

Parameters Index: Index of Word inside the TextBlock.
Must be between 0 and WordCount -1

2.7 SCBCdrWord

2.7.1. Description
This object represents a textual Word of a Document.

2.7.2. Methods and Properties

Color

Description The color that will be used for highlighting checked Words is set
/ returned

Syntax Color As OLE_COLOR (read/write)

Height

Description Returns the height of the Word in pixel.

Syntax Height As Long (read only)

Left

Description Returns the left border of the Word in pixel.

Syntax Left As Long (read only)

PageNr

Description Returns the number of the DocPage where the Word is located.

Syntax PageNr As Long (read only)

StartPos

Description Returns the index of the first character of the Word inside the
Worktext attached to the Workdoc.

Syntax StartPos As Long (read only)

Text

Description The text of the Word is returned.

Syntax Text As String (read only)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 119 of 207

TextLen

Description The number of characters of the Word is returned.

Syntax TextLen As Long (read only)

Tooltip

Description Sets / returns a tooltip string which will be displayed in the
checked Words highlight mode

Syntax Tooltip As String (read/write)

Top

Description Returns the top border of the Word in pixel.

Syntax Top As Long (read only)

Visible

Description Sets / returns if the highlighted rectangle of the Word should be
visible if the Word highlighting for checked Words is enabled.

Syntax Visible As Boolean (read/write)

Width

Description Returns the width of the Word in pixel.

Syntax Width As Long (read only)

Worktext

Description Returns the Worktext object of the Word.

Syntax Worktext As ISCBCroWorktext (read only)

2.8 SCBCdrDocPage

2.8.1. Description
An object representing a single DocPage within a Workdoc.

2.8.2. Type Definitions

CDRPageSource
Enumeration containing the Page source.

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 120 of 207

Available Types Description
CDRPageSourceFrontPage Front Page assigned to Workdoc

CDRPageSourceRearPage Rear Page assigned to Workdoc

CDRPageSourceUnknown Assigned Page to Workdoc is not known

CroLinesDir
Enumeration specifying the direction of a line.

Available Types Description
CroLinesDir_Horizontal Horizontal line

CroLinesDir_Vertical Vertical line

CroLinesKooType
Further information about a line.

Available Types Description
CroLinesKoorType_Angle Angle of line

CroLinesKoorType_FirstPX Starting abscissa of line

CroLinesKoorType_FirstPY Starting ordinate of line

CroLinesKoorType_Length Length of line

CroLinesKoorType_SecondPX Ending abscissa of line

CroLinesKoorType_SecondPY Ending ordinate of line

CroLinesKoorType_Thick Thickness of line

2.8.3. Methods and Properties

DisplayImage

Description Specifies the index of the Image, which should be
displayed if the DocPage is visible inside a Viewer.

Syntax DisplayImage As Long (read/write)

DocIndex

Description Specifies the index of the document inside the Workdoc
that this DocPage belongs to.

Syntax DocIndex (ImageIndex As Long) As Long (read
only)

See also DocFileName and DocFileType property of the
SCBCdrWorkdoc object

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 121 of 207

Parameters ImageIndex: ImageIndex of the DocPage. Valid
indices are 0 to ImageCount-1.

DocPageIndex

Description Specifies the DocPage offset inside the document where
this DocPage belongs to.

Syntax DocPageIndex (ImageIndex As Long) As Long
(read only)

Parameters ImageIndex: Index of the Image of the DocPage.
Valid indexes are 0 to ImageCount-1.

GetResolution

Description Returns the resolution of the specified Image in pixel.

Syntax GetResolution (ImageIndex As Long, pXRes As
Long, pYRes As Long)

Parameters ImageIndex: [in] Index of the Image of the DocPage.
Valid indices are 0 to ImageCount-1.

 pXRes: [out] Will contain the x resolution after
execution of the method.

 pYRes: [out] Will contain the y resolution after
execution of the method.

Height

Description Returns the height of the DocPage in millimeter.

Syntax Height As Double (read only)

Image

Description Returns an Image object for the specified index of the
DocPage.

Syntax Image (index As Long) As ISCBCroImage (read
only)

Parameters Index: Index of the Image of the DocPage.
Valid indices are 0 to ImageCount-1.

ImageCount

Description Returns the number of Images available for the DocPage.

Syntax ImageCount As Long (read only)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 122 of 207

Line

Description Returns some specific property of line, viz. starting X ect.,
of some specific index and direction.

Syntax Line (LineIndex As Long, LineDir As
CroLinesDir, KooType As CroLinesKooType)
As Long (read only)

Parameters LineIndex: Zero-based index of the Line.

 LineDir: Direction of Line (Horizontal or
Vertical).

 KooType: Information of a Line (starting X,
starting Y, End X, End Y etc.)

LinesCount

Description Returns the number of horizontal or vertical Lines present
in a document.

Syntax LinesCount (LinesDir As CroLinesDir) As Long
(read only)

Parameters LinesDir: Direction of Line (Horizontal or
Vertical).

OriginalDocumentFileName

Description This property allows the Scripter to access the page
property to examine what the original file name was for
the image. This could be useful for the Scripter if
attempting to track original filenames for pages when a
document is split/merged via Verifier / Web Verifier or via
the Page Separation engine.

Syntax pWorkdoc.Pages(0).OriginalDocumentFileName

Example e As SCBCdrDocPage

Dim originalFilename As String

Set myPage = pWorkdoc.Pages(0) ‘Get First page

originalFilename = myPage.OriginalDocumentFileName

MsgBox "Page - " & originalFilename

PageSource

Description Sets / returns a source of a DocPage. At the time of
scanning, a DocPage can be directly assigned to
Workdoc.

Syntax PageSource As CDRPageSource (read/write)

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 123 of 207

Example

Rotate

Description Rotates the underlying Images by the specified angle.

Syntax Rotate (angle As Double)

Parameters Angle: Specifies the rotation angle in a range
of -180.0 to +180.0.

Rotation

Description Returns the rotation angle as it was applied by Rotate
method.

Syntax Rotation As Double (read only)

Text

Description Returns the text of the DocPage if OCR was already
executed.

Syntax Text As String (read only)

Width

Description Returns the width of the DocPage in millimeter.

Syntax Width As Double (read only)

2.9 SCBCdrFolder

2.9.1. Description
A Folder may represent an array of Workdocs within a Batch. A Folder may contain one or
more Workdocs. During classification and extraction it is possible to access all Workdocs of
the same Folder from script.

2.9.2. Methods and Properties

AddDocument

Description Add a Workdoc into a Folder at the last position and also
returns the position where the Workdoc is appended.

Syntax AddDocument (pWorkdoc As ISCBCdrWorkdoc,
pNewIndex As Long)

Parameters pWorkdoc: [in] Added Workdoc Object

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 124 of 207

 pNewIndex: [out] Index position in a Folder where
Workdoc is inserted

Clear

Description Frees all the allocated memorie by Folder.

Syntax Clear ()

Document

Description Returns a Workdoc from the specified index of the
document array of the Folder.

Syntax Document (Index As Long) As ISCBCdrWorkdoc
(read only)

Parameters Index: The index of the Workdoc within the
Folder. Must be from 0 to
DocumentCount-1.

DocumentCount

Description The number of Workdocs within the Folder is returned.

Syntax DocumentCount As Long (read only)

FolderData

Description Provides the possibility to store and load a variable
number of strings using any string as index key.

Syntax FolderData (Index As String) As String
(read/write)

Parameters Index: Any non-empty string which is used as
index key

Example

'writing FolderData

pWorkdoc.Folder.FolderData("NumberFound") = "1"

pWorkdoc.Folder.FolderData("Number") =
pWorkdoc.Field("Number")

'reading FolderData

if pWorkdoc.Folder.FolderData("NumberFound") = "1" then

if len(pWorkdoc.Field("Number")) > 0 then

Scripting Reference Guide Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)

Perceptive Intelligent Capture Page 125 of 207

'takeover the result from the other workdoc

pWorkdoc.Field("Number") =
pWorkdoc.Folder.FolderData("Number")

else

'compare results

if pWorkdoc.Field("Number") =
pWorkdoc.Folder.FolderData("Number") then

'found the same number again

else

'found a different number on this document

end if

end if

end if

InsertDocument

Description Inserts a Workdoc into a Folder at some given position.

Syntax InsertDocument (Index As Long, pWorkdoc As
ISCBCdrWorkdoc)

Parameters Index: Index at which Workdoc is
to be inserted, zero-based
indexing

 pWorkdoc: Workdoc object

MoveDocument

Description To move a Workdoc from one position to another position
in a Folder.

Syntax MoveDocument (FromIndex As Long, ToIndex As
Long)

Parameters FromIndex: Zero-based Index from
where Workdoc is moved

 ToIndex: Zero-based index where
Workdoc is to be placed

RemoveDocument

Description To remove a Workdoc from a given index from a Folder.

Syntax RemoveDocument (index As Long)

Parameters Index: Zero-based index in a Folder from
where Workdoc is to be removed

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 126 of 207

Chapter 3 Cedar Project Object Reference
(SCBCdrPROJLib)

3.1 Description
The Cedar Project object represents a complete Project definition including all Document
Classes, Field Definitions, and used classification and extraction methods.

3.2 Type Definitions

CDRClassifyMode
This type defines the algorithms for how the results of several classification engines can
be combined.

Available Types Description
CDRClassifyAverage Average will be computed

CDRClassifyMax Maximum will be computed

CDRClassifyWeightedDistance For each cell of classification matrix difference
between maximum of column and classification
weight is calculated

CdrSLWDifferentResultsAction
When the Template and Associative Search engines determine different results during
classification, there are different options how the program should continue the
processing.

Available Types Description
CdrDoNothing Let Verifier user decide to skip special

processing altogether.

CdrDoSmartDecision Make a smart decision1, e.g. the machine makes
the decision for the classification.

CdrUseDocumentClassName Automatically assign current document class
name to the supplier field content.

CdrUseSupplierField Automatically assign supplier field content to the
document class name.

CdrForceValidationMode
This table defines the options for Force Validation.

Available Types Description
CdrForceValDefault CdrForceValidationModeDefault:

ForceValidationMode inherited

1 The system will decide which one is the right DocClass based on an algorithm that compares the
results of the associative search and the template classification. This feature can be selected from
the Supervised Learning tab in Designer application.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 127 of 207

CdrForceValForbidden CdrForceValidationModeForbidden:
ForceValidation (3*return) not allowed

CdrForceValPermitted CdrForceValidationModePermitted:
ForceValidation (3*return) allowed

CdrLicenseCounter

The data type definitions for all available license counters to be interrogated in script.

Available Types Description

TLCFineReaderRemainingUnits Remaining page units available to be processed
by the FineReader8 licensing scheme.

Integer Value = 18

TLCPeriodDocumentsClassified Documents classified within the licensing period.

Integer Value = 10

TLCPeriodDocumentsExported Documents exported within the licensing period.

Integer Value = 14

TLCPeriodDocumentsExtracted Documents extracted within the licensing period.

Integer Value = 12

TLCPeriodDocumentsOCRed Documents OCRed within the licensing period.

Integer Value = 8

TLCPeriodDocumentsProcesse
d

 Documents processed within the licensing
period.

Integer Value = 2

TLCPeriodDocumentsValidated
Verifier

 Documents validated in Verifier within the
licensing period.

Integer Value = 16

TLCPeriodPagesImported Pages imported within the licensing period.

Integer Value = 4

TLCPeriodPagesOCRed Pages OCRed within the licensing period.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 128 of 207

Integer Value = 6

TLCPeriodPagesProcessed Pages Processed within the licensing period.

Integer Value = 0

TLCTotalDocumentsClassified Total Overall Classified documents.

Integer Value = 11

TLCTotalDocumentsExported Total Overall Exported documents.

Integer Value = 15

TLCTotalDocumentsExtracted Total Overall Extracted documents.

Integer Value = 13

TLCTotalDocumentsOCRed Total Overall OCRed documents.

Integer Value = 9

TLCTotalDocumentsProcessed Total Overall Processed documents.

Integer Value = 3

TLCTotalDocumentsValidatedV
erifier

 Total Overall documents validated in verifier.

Integer Value = 17

TLCTotalPagesImported Total Overall Pages Imported documents.

Integer Value = 5

TLCTotalPagesOCRed Total Overall Pages OCRed documents.

Integer Value = 7

TLCTotalPagesProcessed Total Overall Pages Processed documents.

Integer Value = 1

CdrLicenseFeatureName

The data type definitions for all available license features to be interrogated in script.

Each data type item below is represented in the license file and may appear. If the item

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 129 of 207

appears in the license file, that the feature is licensed and available for usage.

Available Types Description

CDRfnA2iACheckReader The A2iA Check Reader License
Feature.

Integer Value = 30

CDRfnA2iAFieldReaderCustom The A2iA Field Reader custom
License Feature.

Integer Value = 29

CDRfnA2iAFieldReaderSingleField The A2iA Field Reader Single Field
License Feature.

Integer Value = 28

CDRfnAddressAnalysisEngine The Address Analysis Engine
License Feature.

Integer Value = 57

CDRfnAddressAnalysisEngine2 The Address Analysis2 Engine
License Feature.

Integer Value = 58

CDRfnASSAClassifyEngine The ASSA Classification Engine
License Feature.

Integer Value = 51

CDRfnAssociativeSearchEngine The Associative Search Engine Field
License Feature.

Integer Value = 63

CDRfnAutomaticLearningProcessing The Automatic Learning Processing
License Feature.

Integer Value = 64

CDRfnAutomaticLearningSupervising The Learnset Manager License
Feature.

Integer Value = 65

CDRfnBrainwareClassifyEngine The Brainware Classifier License
Feature.

Integer Value = 46

CDRfnBrainwareExtraction The Brainware Extraction evaluation
engine License Feature.

Integer Value = 61

CDRfnBrainwareFieldExtraction The Brainware Field Extraction
License Feature.

Integer Value = 45

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 130 of 207

CDRfnBrainwareLayoutClassification The Brainware Layout Classifier
engine License Feature.

Integer Value = 54

CDRfnBrainwareTableExtraction The Brainware Table Extraction
engine License Feature.

Integer Value = 60

CDRfnCairoImage The Cairo Image License Feature.

Integer Value = 21

CDRfnCairoOMR The Cairo OMR License Feature.

Integer Value = 33

CDRfnCaptureService The Capture Service License
Feature.

Integer Value = 68

CDRfnCleqsBarcode The Cleqs Barcode OCR License
Feature.

Integer Value = 34

CDRLfnCloseLicensingPeriodBySlaveServer Integer Value = 9

CDRfnConcurrentVerifierSessionCount The Web Verifier session count
License Feature.

Integer Value = 1

CDRfnCustomer The customer name License
Feature.

Integer Value = 15

CDRfnCustomerID The customer ID License Feature.

Integer Value = 16

CDRfnDesignerDesignLicense The Designer application module
License Feature.

Integer Value = 70

CDRfnDisableUpdateForVerifier The ability to disable an update for
verifier License Feature.

Integer Value = 11

CDRfnEMailsImporting The EMail Importing License
Feature.

Integer Value = 66

CDRfnFineReader The FineReader4 License Feature.

Integer Value = 22

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 131 of 207

CDRfnFineReader5 The FineReader5 License Feature.

Integer Value = 27

CDRfnFineReader7 The FineReader7 License Feature.

Integer Value = 32

CDRfnFineReader8 The FineReader8 License Feature.

Integer Value = 36

CDRLfnFirmwareHDSerialNumber The Hard Disk Serial Number
License Feature.

Integer Value = 13

CDRLfnFormatAnalysisEngine The Format Analysis engine License
Feature.

Integer Value = 56

CDRLfnFormsClassifyEngine The Forms Classifier engine License
Feature.

Integer Value = 50

CDRLfnHardwareBindingEnabled The HW binding enabled License
Feature.

Integer Value = 4

CDRLfnImageSizeClassification The Image Size classifier engine
License Feature.

Integer Value = 49

CDRLfnIMailBasicComponents The Imail components License
Feature.

Integer Value = 69

CDRLfnISIS The ISIS driver License Feature.

Integer Value = 41

CDRLfnKadmos The Kadmos OCR License Feature.

Integer Value = 24

CDRLfnKadmos4 The Kadmos4 OCR License
Feature.

Integer Value = 25

CDRLfnKofax The Kofax driver License Feature.

Integer Value = 44

CDRLfnLanguageClassifyEngine The Language Classifier Engine
License Feature.

Integer Value = 53

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 132 of 207

CDRLfnLicenseCountingByReprocessing The License Counting when
reprocessing documents License
Feature.

Integer Value = 10

CDRLfnLicenseExpirationDate The License expiration date License
Feature.

Integer Value = 18

CDRLfnLicenseVersion The License version License
Feature.

Integer Value = 17

CDRLfnLicensingPeriodInDays The License period in days License
Feature.

Integer Value = 7

CDRLfnMasterLicenseHexID The License HexID License Feature.

Integer Value = 74

CDRLfnNonImageDocumentsProcessing The electronic document processing
License Feature.

Integer Value = 67

CDRLfnNonImageDocumentsProcessing The electronic document processing
License Feature.

Integer Value = 67

CDRLfnOverallVerifierSessionCount The overall verifier session count
License Feature.

Integer Value = 2

CDRLfnPeriodDocumentsClassified The documents classified count
License Feature.

Integer Value = 95

CDRLfnPeriodDocumentsExported The documents exported count
License Feature.

Integer Value = 99

CDRLfnPeriodDocumentsExtracted The documents extracted count
License Feature.

Integer Value = 97

CDRLfnPeriodDocumentsOCRed The documents OCRed count
License Feature.

Integer Value = 93

CDRLfnPeriodDocumentsProcessed The documents Processed count
License Feature.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 133 of 207

Integer Value = 87

CDRLfnPeriodDocumentsValidatedVerifier The documents validated in verifier
License Feature.

Integer Value = 101

CDRLfnPeriodPagesImported The Pages imported License
Feature.

Integer Value = 89

CDRLfnPeriodPagesOCRed The Pages OCRed License Feature.

Integer Value = 91

CDRLfnPeriodPagesProcessed The Pages Processed License
Feature.

Integer Value = 85

CDRLfnPhraseClassifyEngine The Phrase Classifier engine
License Feature.

Integer Value = 48

CDRLfnPrimaryDongleID The Primary Dongle ID License
Feature.

Integer Value = 5

CDRLfnProcessedDocumentsPerDay The Processed Documents Per Day
License Feature.

Integer Value = 6

CDRLfnQualitySoftBarcode The QualitySoft Barcode OCR
engine License Feature.

Integer Value = 37

CDRLfnQualitySoftBarcodeDM The QualitySoft Barcode DM OCR
engine License Feature.

Integer Value = 38

CDRLfnQualitySoftBarcodePDF417 The QualitySoft Barcode PDF OCR
engine License Feature.

Integer Value = 39

CDRLfnRecognita The Recognita OCR engine License
Feature.

Integer Value = 23

CDRLfnRecognitaBarcode The Recognita Barcode OCR engine
License Feature.

Integer Value = 35

CDRLfnRecoStar The RecoStar OCR engine License
Feature.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 134 of 207

Integer Value = 26

CDRLfnSecondaryDongleID The Secondary Dongle ID License
Feature.

Integer Value = 3

CDRLfnSecondaryHDSerialNumber The Secondary Hard Disk Serial
Number License Feature.

Integer Value = 12

CDRLfnSecondaryMACAddress The Secondary MAC Address
License Feature.

Integer Value = 14

CDRLfnSelfLearningManager The Learnset Manager Module
License Feature.

Integer Value = 73

CDRLfnSERSCSI The SCSI Driver License Feature.

Integer Value = 40

CDRLfnServer The RTS Server Module License
Feature.

Integer Value = 71

CDRLfnServerCount The RTS Server count License
Feature.

Integer Value = 19

CDRLfnSupplierExtraction The supplier extraction License
Feature.

Integer Value = 62

CDRLfnSVRS The SVRS driver License Feature.

Integer Value = 43

CDRLfnTableAnalysisEngine The Table Analysis engine License
Feature.

Integer Value = 59

CDRLfnTemplateClassifyEngine The Template Classifier engine
License Feature.

Integer Value = 47

CDRLfnTWAIN The Twain Driver License Feature.

Integer Value = 42

CDRLfnVerifier The Verifier application module
License Feature.

Integer Value = 72

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 135 of 207

CDRLfnVerifierCount The Verifier application count
License Feature.

Integer Value = 20

CDRLfnZoneAnalysisEngine The Zone Analysis engine License
Feature.

Integer Value = 55

CdrMessageType
This type defines the different message types.

Available Types Description

CDRTypeInfo An informational message.

CDRTypeWarning A warning message.

CDRTypeError An error message.

CdrMessageSeverity
This type defines the different message severities.

Available Types Description

CDRSeverityLogFileOnly Store the message to the application log file only.

CDRSeveritySystemMonitoring Store the message in the log file and forward it to
the host instance’s MMC console and to the
System Monitoring service of the Runtime Server.
This option is applicable when the call is executed
from within the Runtime Server application only.

CDRSeverityEmailNotificatio Store the message in the log file and forward it to
the MMC console / System Monitoring view and
send as an e-mail to the system administrators
via System Monitoring service of Runtime Server.
This option is applicable when the call is executed
from within the Runtime Server application only.

3.2.1. Methods and Properties

ActivateLicensing

Description This method is used as a call to enable license activation in the
custom script. The call is used as a prerequisite prior to retrieving
information for the licensing utilization.

By calling activate licensing, the script creates a connection to the
active license being utilized.

Syntax ActivateLicensing (ModuleName as text, LicensePath as

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 136 of 207

text)

Parameters ModuleName: A text that represents the application activating
licensing. Any value may be entered here.

 LicensePath: A text that contains the location of the license
share file that will be queried.

The licensePath must be accessible from the
location of the script execution.

The license path must point to the Runtime.lic
file explicitly.

See Also ReportLicensingStatus, GetLicenseValueByName,
GetLicenseValueByID

Example Code to retrieve licensing utilization information for active
licensing counters.

 ect represents the project library object.

Dim theProject As New SCBCdrPROJLib.SCBCdrProject

'The location of the shared license file that is being updated.

Dim LicenseShareLocation As String

LicenseShareLocation="\\MasterRTS\License\Runtime.lic"

'Activate licensing within the code for project. This enables you
to reference the license in the next command.

theProject.ActivateLicensing("CustomEXE", LicenseShareLocation)

'Call the License Reporting function, this has several options
available

theProject.ReportLicensingStatus(True,
SCBCdrPROJLib.CDRMessageSeverity.CDRSeverityLogFileOnly)

AllClasses

Description Returns a Collection of all defined DocClasses of this Project.

Syntax AllClasses As ISCBCdrDocClasses (read only)

See also ISCBCdrDocClasses and ISCBCdrDocClass for further information

BaseClasses

Description Returns a Collection containing all defined BaseDocClasses.

Syntax BaseClasses As ISCBCdrDocClasses (read only)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 137 of 207

See also ISCBCdrDocClasses and ISCBCdrDocClass for further information

ClassificationMode

Description Returns the used classification mode.

Syntax ClassificationMode As CDRClassifyMode (read/write)

DefaultClassifyResult

Description Returns the default DocClass name to which a document is
redirected if no other DocClass fits.

Syntax DefaultClassifyResult As String (read/write)

DefaultLanguage

Description Returns the language used as default.

Syntax DefaultLanguage As String (read only)

Example Private Sub Document_FocusChanged(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc, ByVal Reason As
SCBCdrPROJLib.CdrFocusChangeReason, ByVal OldFieldIndex As Long,
pNewFieldIndex As Long)

'Set the table column to be invisible, check that the verifier form
hasn’t been loaded yet.

If Reason=CdrBeforeFormLoaded Then

'The Table Setting to use to set table properties.

Dim theTableSettings As
SCBCdrBrainwareTableEngineLib.SCBCdrTableSettings

Dim theAnalysisSettings As Object

Project.AllClasses.ItemByName("Invoices").GetFieldAnalysisSettings(
"Table", Project.DefaultLanguage, theAnalysisSettings) 'Get the
table settings for the TABLE field.

Set theTableSettings = theAnalysisSettings

theTableSettings.ColumnVisible(2) = True 'Set the Column
visible to True to show, False to hide.

End If

End Sub

Filename

Description Returns the filename of the Project including the directory path

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 138 of 207

Syntax Filename As String (read only)

ForceValidation

Description If ForceValidation is set to 'permitted' then the user can overrule
the validation by pressing three times on the Return key. If it is set
to 'forbidden' then the user cannot change the content of the field
disregarding the validation rules.

Syntax ForceValidation As CdrForceValidationMode
(read/write)

GetVerifierProject

Description Returns the Verifier Project.

Syntax GetVerifierProject (ppVal As Object)

Parameters ppVal: [out] Verifier Project Object

LastAddressPoolUpdate

Description Returns the time when the address pool was updated for the last
time.

Syntax LastAddressPoolUpdate As Date (read only)

Lock

Description This property locks the Project for updating.

Syntax Lock ()

LogScriptMessage

Description This method enables the developer to utilize the new in-built
functionality to automate custom script error notification directly to
the core product logs, MMC, or system monitoring notification.

Syntax LogScriptMessage(Type As Long, Code As Long,
MessageText As String)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 139 of 207

Parameters Type: The CdrMessageType option to determine
whether the message is classified to either an
Information, a Warning, or an Error.

 Code: Represents the severity code of the
message. Reference CdrMessageSeverity for
additional information on options.

This option will depict where the message will
appear (Log, System Monitoring, or as an
EMail).

 MessageText: The message text to display/send.

See Also CdrMessageType, CdrMessageSeverity

Example The example below writes a custom script message to the core
product log file (H_RTSInstanceName).
Project.LogScriptMessage(CDRTypeInfo, CDRSeverityLogFileOnly, _

 sification process has been started for document " &
pWorkdoc.Filename)

The above script can be placed in the PreClassify event and
would provide a entry in the log similar to this:
[Info] |30| 01:59:33.312 | 3108 | 668184k/1428344k |
514004k/3520792k | 57176k/67252k | 238 | 38/43 | The Classification
process has been started for document c:\slw demo
us\batches\00000000\00000478.wdc

MinClassificationDistance

Description Sets / returns the minimal distance of classification results.

Syntax MinClassificationDistance As Double (read/write)

MinClassificationWeight

Description Sets / returns the minimal classification weight.

Syntax MinClassificationWeight As Double (read/write)

MinParentClsDistance

Description Sets / returns the minimal distance between the classification
weight of the parent and the derived DocClasses.

Syntax MinParentClsDistance As Double (read/write)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 140 of 207

MinParentClsWeight

Description Sets / returns minimal parent classification weight. This value is
used as threshold during parent classification.

Syntax MinParentClsWeight As Double (read/write)

MoveDocClass

Description Moves a DocClass specified by its Name to a new
ParentDocClass specified by NewParentName.

Syntax MoveDocClass (Name As String, NewParentName As
String)

Parameters Name: Name of moved DocClass

 NewParentName: Name of new ParentDocClass

NoUI

Description Sets or returns NoUI. If NoUI set to true, then no login dialog is
displayed.

Syntax NoUI As Boolean (read/write)

Page

Description Returns Cairo Page object of current Project.

Syntax Page As ISCBCroPage (read only)

ParentWindow

Description Sets the parent window of the login dialog.

Syntax ParentWindow As Long (write only)

Parameters lhWnd: [in] Window handles of windows
operating system.

PerformScriptCommandRTS

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 141 of 207

Description The method allows the developer to restart, or stop, the Runtime
Server via custom script.

This could be used to perform a Stop on a Runtime Server should
a third party system, such as SAP, be unavailable.

The method stops the currently running Runtime Server instance
executing the script to either stop or restart.

Syntax PerformScriptCommandRTS (CommandID As Long,
MessageType As Long, UserCode As Long,
MessageDescription As String)

Parameters CommandID: Identifier of the command to execute on
the RTS instance.

Two commands that are currently
supported:

. Forcing the RTS instance to stop
document processing (with the
“CommandID” parameter set to “0”).

2. Restarting the RTS instance (with the
“CommandID” parameter set to “1”).

 MessageType: The type of message to log when the
command executes: “0” for
informational message, “1” for warnings
and “2” for error messages. Note that
error messages are additionally
forwarded to MMC administration
console of the Runtime Server.

 UserCode: User error code of the message. This
error code can be defined by the
developer as any custom error number.

 MessageDescription: The description of the message to log
in the common Runtime Server log file
and in the case of error messages on
the MMC administration console.

Example Two examples depicting a stop and a restart of the RTS instance
executing project code.

 ript code stops document processing for the current Runtime Server

‘ instance and logs specified message as error with error code
“777”

Project.PerformScriptCommandRTS 0, 2, 777, "RTS is going to be
stopped from Custom Script"

‘ This script code restarts the current Runtime Server instance and
logs

‘ specified message as warning with error code “999”

Project.PerformScriptCommandRTS 1, 1, 999, "RTS is going to be
restarted from Custom Script"

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 142 of 207

ReportLicensingStatus

Description The method is used to retrieve either all license counter
information, or just the active license counter information.

An active counter license is the document or page limit licensing
that is present in the license file.

Reference the Product Licensing guide for further details on
licensing counters present/available in the license file.

This method returns what the current utilization figures are on the
server.

If running outside of the Runtime Server, the information will be
saved in the U_ log file.

Syntax ReportLicensingStatus (ReportActiveLicensingOnly As
Boolean, Severity As
SCBCdrPROJLib.CDRMessageSeverity)

Parameters ReportActiveLicensingOnly: A Boolean flag to indicate if all
licensing counters should be
outputted (False), or if only the
license counters active in the
license file should be outputted
(True).

 Severity: The location of the utilization
output to be sent to. This relates
to the defined types shown in
CdrMessageSeverity type
definition (Log File, Email, or RTS
System Monitoring).

An example of a log file output is:
Requested current licensing status for license
"Internal" with ID 00999-D7CDV811. License
updated last time at 2007-11-16 21:02:55.
Current licensing period is [2] of 30 days.
Project was started at 2007-10-17 15:20:31.

License status for [Processed Pages per Day
= 500] (active). Current utilization: 0.65%.
Units processed: 97 in period of 1 day(s). Units
credit: 14903.

See Also ActivateLicensing, GetLicenseValueByName,
GetLicenseValueByID

Example Code to retrieve licensing utilization information for all licensing
counters.

 ect represents the project library object.

Dim theProject As New SCBCdrPROJLib.SCBCdrProject

'The location of the shared license file that is being updated.

Dim LicenseShareLocation As String

LicenseShareLocation="\\MasterRTS\License\Runtime.lic"

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 143 of 207

'Activate licensing within the code for project. This enables you
to reference the license in the next command.

theProject.ActivateLicensing("CustomEXE", LicenseShareLocation)

'Call the License Reporting function, this has several options
available

theProject.ReportLicensingStatus(False,
SCBCdrPROJLib.CDRMessageSeverity.CDRSeverityLogFileOnly)

ShowValidationTemplates

Description Display the validation templates and their settings in a given
container.

Syntax ShowValidationTemplates (pContainer As
ISCBCdrPPGContainer)

Parameters pContainer: Container used to save the validation templates
and their settings.

SLWDifferentResultsAction

Description Sets or returns the action to be done if a template classification
and supplier extraction has different results.

Syntax SLWDifferentResultsAction As
CdrSLWDifferentResultsAction (read/write)

SLWSupplierInvalidIfDifferentClsResults

Description Sets or returns if a Supplier Field is made invalid when the
template classification and supplier extraction have different
results.

Syntax SLWSupplierInvalidIfDifferentClsResults As Boolean
(read/write)

Unlock

Description This method unlocks the Project after updating.

Syntax Unlock ()

UpdateAddressPool

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 144 of 207

Description To update the address analysis pool.

Syntax UpdateAddressPool ()

ValidationSettingsColl

Description Returns a collection of all activated validation engines.

Syntax ValidationSettingsColl As ISCBCroCollection (read
only)

ValidationTemplates

Description Returns a collection of all available validation templates.

Syntax ValidationTemplates As ISCBCroCollection (read only)

VersionCount

Description Returns the number of versions available for specified filename.

Syntax VersionCount (Filename As String) As Long (read only)

Parameters Filename: Name of the file.

WordSegmentationChars

Description Sets / returns a string containing all characters used for Word
segmentation.

Syntax WordSegmentationChars As String (read/write)

3.3 SCBCdrDocClasses

3.3.1. Description
This Collection contains all defined DocClass objects of the Cedar Project.

3.3.2. Methods and Properties

Collection

Description Returns the Collection which is internally used to store the

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 145 of 207

DocClasses.

Syntax Collection As ISCBCroCollection (read only)

Count

Description Returns the number of items within the Collection.

Syntax Count As Long (read only)

IgnoreAnalysisFailures

Description If set to ‘True’, any errors occuring during extraction analysis
phase will be ignored. Errors will not cause a sudden
termination of the extraction process. Instead, traces will be left
in the component logs for the CdrProj library (at tracing level 1,
i.e. Error):

0|0|13:10:14.840|LErr:0|hRes:0x80005141|cdrproj\scbcdrdocclass.cpp|Wed Sep 12 13:07:13
2012|2416|F|Error preprocessing zone ! Zone rectangle out of image.|||

0|0|13:10:14.840|LErr:0|hRes:0|cdrproj\scbcdrdocclass.cpp|Wed Sep 12 13:07:13
2012|2416||Level2||SAVINGS|

By default, this option is switched off. It can be activated at any
time, for example in the PreExtract event.

Syntax ItemByIndex (Index As Long) As ISCBCdrDocClass
(read only)

Example ' Cedar Document Class Script for Class "Level2"

Private Sub SAVINGS_PreExtract(pField As
SCBCdrPROJLib.ISCBCdrField, pWorkdoc As
SCBCdrPROJLib.ISCBCdrWorkdoc)

 pWorkdoc.NamedProperty("IgnoreAnalysisFailures") = True

End Sub

Item

Description Returns a specified item from the Collection

Syntax Item (Index As Variant) As ISCBCdrDocClass (read
only)

Parameters Index: [in] The index can either be a Long
value specifying the index within the
collection or a String specifying the item

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 146 of 207

by name.

ItemByIndex

Description Returns an item from the Collection specified by index.

Syntax ItemByIndex (Index As Long) As ISCBCdrDocClass
(read only)

Parameters Index: [in] Index of the item to retrieve from the
Collection, valid range from 1 to Count

ItemByName

Description Returns an item from the Collection specified by name.

Syntax ItemByName (Name As String) As ISCBCdrDocClass
(read only)

Parameters Name: [in] Name of the item to retrieve from
the Collection.

ItemExists

Description Returns TRUE if an item with specified name exists inside the
Collection or FALSE is returned.

Syntax ItemExists (Name As String) As Boolean

Parameters Name: [in] Name of item to search for.

ItemIndex

Description The index of an item specified by name is returned.

Syntax ItemIndex (Name As String) As Long (read only)

Parameters Name: [in] Name specifying an item in the
Collection.

ItemName

Description The name of an item specified by index is returned.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 147 of 207

Syntax ItemName (Index As Long) As String (read only)

Parameters Index: [in] Index specifying an item in the
Collection, valid range from 1 to Count

Tag

Description To store a variant for each item of the Collection.

Syntax Tag (Index As Long) As Variant (read/write)

Parameters Index: Specifies the item index, valid from 1 to
Count

3.4 SCBCdrDocClass

3.4.1. Description
A Cedar DocClass object represents a single document class within a Cedar project class
hierarchy.

3.4.2. Type Definitions

CdrFocusChangeReason
This enumeration defines the reason for the focus change of a Verifier field edit.

Available Types Description
CdrEnterPressed Focus changed by pressing Enter

CdrFcrCandidateCopied Focus changed (refreshed) because a candidate and its
location was copied to the field

CdrFcrRefreshed Focus changed (refreshed) because the selection area
and its location was copied to the field

CdrFcrSelectionCopied Focus changed (refreshed) because the selection area
and its location was copied to the field

CdrFcrWordCopied Focus changed (refreshed) because a word and its
location was appended to the field

CdrFormLoaded Focus changed because of loading form

CdrMouseClicked Focus changed because of mouse click

CdrSelectedOutside Focus changed because of some selection outside

CdrTableCellSelected Focus changed because of the selection of a Table cell

CdrTabPressed Focus changed because of pressing Tab key

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 148 of 207

CdrUnknownReason Focus changed because of an unknown reason

CdrVerifierClassifyReason
The reason for the classification of the document.

Available Types Description
CdrChangedReason The user selected a new class without leaving the

classification view.

CdrInitReason Manual classification view has just been displayed.

CdrValidatedReason The document class has been changed.

CDRsiModule
This type defines the module in which the smart index definition should be used.

Available Types Description
CDRsiModulePerceptive
Intelligent Capture

 Use smart indexing in automatic Field extraction

CDRsiModuleDistVer Use smart indexing in automatic Field extraction and
manual Field validation

CDRsiModuleVerifier Use smart indexing in manual Field validation

CdrForceValidationMode
This enumeration defines the different options for the ForceValidation.

Available Types Description
CdrForceValDefault CdrForceValidationModeDefault: ForceValidationMode

inherited

CdrForceValForbidden CdrForceValidationModeForbidden: ForceValidation
(3*return) not allowed

CdrForceValPermitted CdrForceValidationModePermitted: ForceValidation
(3*return) allowed

3.4.3. Methods and Properties

ClassificationField

Description To read or to write the name of the field that is used for the
classification.

Syntax ClassificationField As String (read/write)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 149 of 207

ClassificationRedirection

Description Returns the name of the target DocClass.

Syntax ClassificationRedirection As String (read/write)

ClassifySettings

Description Collection of chosen classification engines and their settings for this
DocClass.

Syntax ClassifySettings As ISCBCroCollection (read only)

DerivedDocClasses

Description Returns a collection of all DocClasses derived directly from this
DocClass.

Syntax DerivedDocClasses As ISCBCdrDocClasses (read only)

DisplayName

Description Sets / returns the display name of the DocClass currently not used, if
nothing inserted here the DocClass name are used.

Syntax DisplayName As String (read/write)

Fields

Description Provides access to FieldDefs of a DocClass.

Syntax Fields As ISCBCdrFieldDefs (read only)

ForceSubtreeClassification

Description Sets / returns if the classification to the sub tree of this DocClass is
forced.

Syntax ForceSubtreeClassification As Boolean (read/write)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 150 of 207

ForceValidation

Description If ForceValidation is set to 'permitted' then the user can overrule the
validation by pressing three times on the Return key. If it is set to
'forbidden' then the user cannot change the content of the field
disregarding the validation rules

Syntax ForceValidation As CdrForceValidationMode (read/write)

GetFieldAnalysisSettings

Description Returns the analysis settings for the document class.

Syntax GetFieldAnalysisSettings (FieldName As String, Language
As String, ppAnalysisSettings As
ISCBCdrAnalysisSettings)

Parameters FieldName: The name of the field for which the analysis
settings are retrieved.

 ppAnalysisSettings: The name of the analysis settings object that
is used in the code to assign the settings to,
see script sample.

Example

'This script samples shows how to retrieve the analysis settings

'to assign them for example to be used for the associative

'search engine

Dim theDocClass As SCBCdrDocClass

Dim theAnalysisSettings As ISCBCdrAnalysisSettings

Dim theSupplierSettings As Object

Set theDocClass=Project.AllClasses.ItemByName (pWorkdoc.DocClassName)

'Get the settings for the field VendorName

theDocClass.GetFieldAnalysisSettings "VendorName","German",
theAnalysisSettings

Set theSupplierSettings = theAnalysisSettings

Hidden

Description Specifies if the DocClass should be visible in the Project designer.

Syntax Hidden As Boolean (read/write)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 151 of 207

InitField

Description Reinitializes a required field in workdoc.

Syntax InitField (pWorkdoc As ISCBCdrWorkdoc, pField As
ISCBCdrField)

Parameters pWorkdoc: Current workdoc.

 pField: Field to be cleared.

ManualTableTrainingMode

Description Sets or returns the option for manual Table Extraction training
mode

Syntax ManualTableTrainingMode As Boolean (read/write)

Name

Description Reads or writes the name of the Document Class.

Syntax Name As String (read/write)

Page

Description Returns the Page object of this DocClass with all defined zones
and their OCR settings.

Syntax Page As ISCBCroPage (read only)

Parent

Description Returns the parent DocClass of the actual DocClass.

Syntax Parent As ISCBCdrDocClass (read only)

ShowClassValidationDlg

Description Displays the property page of validation settings for this document
class.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 152 of 207

Syntax ShowClassValidationDlg (pContainer As
ISCBCdrPPGContainer)

Parameters pContainer: Container in which the property page should
be displayed.

ShowFieldValidationDlg

Description Displays the property page of the validation settings for the
specified field name.

Syntax ShowFieldValidationDlg (FieldName As String,
pContainer As ISCBCdrPPGContainer)

Parameters FieldName: Field for which the dialog is shown.

 pContainer: Container in which the property page should be
displayed.

ShowGeneralFieldPPG

Description Starts field settings property page specifying the active tab

Syntax ShowGeneralFieldPPG (FieldName As String,
TabIndexActive As Long,
pContainer As ISCBCdrPPGContainer)

Parameters FieldName: Field for which the dialog is shown.

 TabIndexActive: Zerobased Index for the tab that should be
displayed.

 pContainer: Container in which the property page should
be displayed.

SubtreeClsMinDist

Description Returns the minimal distance to the classification weight of the
derived DocClasses.

Syntax SubtreeClsMinDist As Double (read/write)

SubtreeClsMinWeight

Description Sets / returns the minimal classification weight of the derived
DocClasses.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 153 of 207

Syntax SubtreeClsMinWeight As Double (read/write)

UseDerivedValidation

Description Sets or returns a Boolean value, when derived validation rules are
used.

Syntax UseDerivedValidation As Boolean (read/write)

ValidationSettingsColl

Description Returns a collection of all activated validation engines.

Syntax ValidationSettingsColl As ISCBCroCollection (read
only)

ValidationTemplateName

Description Sets or returns the name of the validation template.

Syntax ValidationTemplateName As String (read/write)

ValidClassificationResult

Description Sets / returns if this DocClass is a valid classification result or if it
is omitted for classification.

Syntax ValidClassificationResult As Boolean (read/write)

VisibleInCorrection

Description This property determines if a project class is available for
classification correction.

In version 4.x, 5.2, and 5.3 this property was read only.

In version 5.3 SP1 and above, this property can be modified prior
to classification correction for a Verifier.

Setting the property to

- True: the class is available for classification correction.

- False: the class is unavailable for classification correction.

Dynamic modification of this property can be managed through

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 154 of 207

the ScriptModule_VerifierClassify event.

Dynamic modification of the class visibility overrides the default
Designer class property.

Attribute Read/write

Syntax VisibleInCorrection As Boolean (read/write)

Example The script sample below shows how to dynamically modify the
property of classes prior to showing the classification view.

The example below hides Invoices, BOLZ and UNICOM classes
from verification availability.

Public Function fnShouldHideClass(ByVal strClassNameToCheck As String, pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc) As Boolean

 Select Case UCase (strClassNameToCheck)
 Case "BOLZ COMPANY 1234561"
 fnShouldHideClass = False
 Case "UNICOM CORPORATION 1234563"
 fnShouldHideClass = False
 Case "INVOICES"
 fnShouldHideClass = False
 Case Else
 fnShouldHideClass = True
 End Select
End Function

Private Sub ScriptModule_VerifierClassify(pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc, ByVal
Reason As SCBCdrPROJLib.CdrVerifierClassifyReason, ClassName As String)
 Dim i As Long
 Dim strNextClassName As String
 If Reason = CdrInitReason Then
 For i = 1 To Project.AllClasses.Count Step 1
 strNextClassName = Project.AllClasses.ItemName(i)
 Project.AllClasses.ItemByIndex(i).VisibleInCorrection =
fnShouldHideClass(strNextClassName, pWorkdoc)
 Next i
 End If

End Sub

FillRectangle

Description Allows the developer to draw a square on the image (White/Black)
which can be used to blank out a certain area on the invoice.

By utilizing the FillRectangle method of the SCBCroImage object,
we can perform image redaction

Parameters Color to use 0: black , 1: white

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 155 of 207

 Left, Top, Width, Height: Dimensions of the rectangle

3.5 SCBCdrFieldDefs

3.5.1. Description
This Collection contains all defined FieldDef objects of a single DocClass.

3.5.2. Methods and Properties

Collection

Description Returns the Collection which is internally used to store the
FieldDefs.

Syntax Collection As ISCBCroCollection (read only)

Count

Description Returns the number of items within the FieldDef Collection.

Syntax Count As Long (read only)

Item

Description Returns a specified item from the Collection.

Syntax Item (Index As Variant) As ISCBCdrFieldDef (read
only)

Parameters Index: [in] The index can either be a Long value
specifying the index (1 to Count) within the
Collection or a String specifying the item by
name.

ItemByIndex

Description Returns an item from the Collection specified by index.

Syntax ItemByIndex (Index As Long) As ISCBCdrFieldDef
(read only)

Parameters Index: [in] Index of the item to retrieve from the
Collection.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 156 of 207

ItemByName

Description Returns an item from the Collection specified by name.

Syntax ItemByName (Name As String) As ISCBCdrFieldDef
(read only)

Parameters Name: [in] Name of the item to retrieve from the
Collection.

ItemExists

Description Returns TRUE if an item with specified name exists inside the
Collection or FALSE is returned.

Syntax ItemExists (Name As String) As Boolean

Parameters Name: [in] Name of item to search for.

ItemIndex

Description The index of an item specified by name is returned.

Syntax ItemIndex (Name As String) As Long (read only)

Parameters Name: [in] Name specifying an item in the Collection.

ItemName

Description The name of an item specified by index is returned.

Syntax ItemName (Index As Long) As String (read only)

Parameters Index: [in] Index specifying an item in the Collection,
valid range from 1 to Count

Tag

Description To store a variant for each item of the Collection.

Syntax Tag (Index As Long) As Variant (read/write)

Parameters Index: Specifies the item index, valid range from 1 to
Count

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 157 of 207

3.6 SCBCdrFieldDef

3.6.1. Description
A Cedar FieldDef object represents the definition of a single FieldDef inside a Cedar
DocClass

3.6.2. Type Definitions

CdrFieldFormat
This type defines the default format of a certain field. (Not yet implemented)

Available Types Description
CdrFieldFormatCurrency CdrFieldFormatCurrency

CdrFieldFormatDate CdrFieldFormatDate

CdrFieldFormatExtNumb
er

 CdrFieldFormatExtNumber

CdrFieldFormatNone CdrFieldFormatNone

CdrFieldFormatNumber CdrFieldFormatNumber

CDRFieldType
This type defines the type of a FieldDef.

Available Types Description
CDRFieldTypeTable The Field type is Table.

CDRFieldTypeText The Field type is text, which may be single or multi-line
text.

CdrForceValidationMode
This enumeration defines the different options for the ForceValidation.

Available Types Description
CdrForceValDefault CdrForceValidationModeDefault: ForceValidationMode

inherited

CdrForceValForbidden CdrForceValidationModeForbidden: ForceValidation
(3*return) not allowed

CdrForceValPermitted CdrForceValidationModePermitted: ForceValidation
(3*return) allowed

CdrValFieldType

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 158 of 207

This enumeration contains different validation types for fields.

Available Types Description
CdrAmountValidation Used for amount values or general numeric values.

CdrChkboxValidation Field as used check box.

CdrCustomValidation TBD

CdrDateValidation Used for date values.

CdrListValidation Used for lists.

CdrTableValidation Used for tables.

CdrTextValidation Used for text values, strings.

3.6.3. Methods and Properties

AlwaysValid

Description Sets / returns if the content of this FieldDef is always valid.

Syntax AlwaysValid As Boolean (read/write)

AnalysisTemplate

Description Returns the name of the analysis template if used.

Syntax AnalysisTemplate (Language As String) As String (read
only)

Parameters Language: Language parameter

AppendListItem

Description Adds a new list item and returns a new item index for it.

Syntax AppendListItem (bstrItem As String) As Long

Parameters bstrItem: String inserted into the list.

ColumnCount

Description Returns the number of Table columns if FieldType is Table.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 159 of 207

Syntax ColumnCount As Long (read only)

ColumnName

Description Returns the name of a Table column if FieldType is Table.

Syntax ColumnName (ColumnIndex As Long) As String (read
only)

Parameters ColumnIndex: Zero-based index of the Table column

DefaultValidationSettings

Description Returns the validation settings with default language.

Syntax DefaultValidationSettings As
ISCBCdrValidationSettings (read only)

Parameters ppValSettings: ValidationSettings object for the default
language

Derived

Description Returns TRUE if the FieldDef properties are derived from an upper
DocClass.

Syntax Derived As Boolean (read only)

DisplayName

Description The DisplayName can be different from the FieldDef name and
does not have any restrictions about the used character set while
the FieldDef name must be a valid basic name. An application may
use the DisplayName instead of the FieldDef name to show a more
readable name of the FieldDef.

Syntax DisplayName As String (read/write)

EvalSetting

Description Sets / returns activated evaluation engine and its settings.

Syntax EvalSetting (Language As String) As Object
(read/write)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 160 of 207

Parameters Language: Language parameter

EvalTemplate

Description Returns the name of the evaluation template if used.

Syntax EvalTemplate (Language As String) As String (read
only)

Parameters Language: Language of Project

FieldID

Description This read-only property returns the internally used FieldID.

Syntax FieldID As Long (read only)

FieldType

Description Sets or returns the type of the FieldDef.

Syntax FieldType As CDRFieldType (read/write)

ForceValidation

Description Sets or returns the mode for the ForceValidation.

Syntax ForceValidation As CdrForceValidationMode
(read/write)

ListItem

Description Sets or returns a list item string for a given index.

Syntax ListItem (lIndex As Long) As String (read/write)

Parameters lIndex: Zero-based index.

ListItemCount

Description Returns the number of strings in the ListItem list.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 161 of 207

Syntax ListItemCount As Long (read only)

Example Dim lngItem As Long

For lngItem =
Project.AllClasses.ItemByName("Invoice").Fields("Currency").ListIte
mCount - 1 To 0 Step -1

MaxLength

Description Returns the maximal number of characters permitted for this
FieldDef.

Syntax MaxLength As Long (read/write)

MinLength

Description Sets / returns the minimal number of characters for this FieldDef.

Syntax MinLength As Long (read/write)

Name

Description Sets / returns the name of the FieldDef.

Syntax Name As String (read/write)

NoRejects

Description Sets / returns if rejects are permitted.

Syntax NoRejects As Boolean (read/write)

OCRConfidence

Description Sets / returns the confidence level for OCR. The value must be
between 0 and 100.

Syntax OCRConfidence As Long (read/write)

RemoveListItem

Description Removes a list item by its index.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 162 of 207

Syntax RemoveListItem (lIndex As Long)

Parameters lIndex: Index of entry to be removed from the list.

Example Project.AllClasses.ItemByName("Invoice").Fields("Currency").RemoveLi
stItem(lngItem)

SmartIndex

Description Contains all definitions about smart indexing.

Syntax SmartIndex As ISCBCdrSmartIndex (read/write)

Example

Private Sub CustomerNo_SmartIndex(pField As
SCBCdrPROJLib.SCBCdrField, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc)

'avoid validation for the Name field if filled by smart indexing

pWorkdoc.Fields("Name").Valid = TRUE

End Sub

UseDerivedOCRSettings

Description Sets / returns if OCR settings of the parent DocClass are used.

Syntax UseDerivedOCRSettings As Boolean (read/write)

UseDerivedValidation

Description Sets / returns if the derived validation rules are used for validation
of this FieldDef.

Syntax UseDerivedValidation As Boolean (read/write)

UseMaxLen

Description Sets / returns if the maximal number of characters is limited to the
value given by MaxLength.

Syntax UseMaxLen As Boolean (read/write)

UseMinLen

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 163 of 207

Description Sets / returns if the usage of the minimal number of characters
given by the property MinLength is activated.

Syntax UseMinLen As Boolean (read/write)

ValidationSettings

Description Sets or returns the chosen validation engine and its settings.

Syntax ValidationSettings (Language As String) As
ISCBCdrValidationSettings (read/write)

Parameters Language: Defines the language for classification,
extraction and validation.

ValidationTemplate

Description Returns the name of validation template.

Syntax ValidationTemplate (Language As String) As String
(read only)

Parameters Language: Defines the language for classification,
extraction and validation.

ValidationType

Description Returns the type of validation.

Syntax ValidationType As CdrValFieldType (read only)

VerifierColumnWidth

Description Sets /returns the width of the specified column of the Table.

Syntax VerifierColumnWidth (ColumnIndex As Long) As Long
(read/write)

Parameters ColumnIndex: Zero-based Index of the Table column

3.7 SCBCdrSettings

3.7.1. Description
The Cedar Settings object stores arbitrary strings for usage in script.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 164 of 207

3.7.2. Methods and Properties

ActiveClient

Description Sets / returns name of the currently active client.

Syntax ActiveClient As String (read/write)

AddClient

Description Adds a new client with the specified name to the current Settings
object.

Syntax AddClient (newVal As String)

Parameters newVal: Name of new client

AddKey

Description Adds a new key specified by its name and its Parent. Refer to
Designer User Guide for more information.

Syntax AddKey (newVal As String, Parent As String)

Parameters newVal: New key name

 Parent: Name of the parent key, in case of a new base
key use an empty string for the Parent.

Clear

Description Clears all clients and keys from the Settings object.

Syntax Clear ()

Client

Description Returns the name of the specified client.

Syntax Client (Index As Long) As String (read only)

Parameters Index: Zero-based client index.

ClientCount

Description Returns the number of clients.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 165 of 207

Syntax ClientCount As Long (read only)

GlobalLearnsetPath

Description Sets or returns the global Learnset path.

Syntax GlobalLearnsetPath As String (read/write)

Key

Description Returns the key name specified by index.

Syntax Key (Index As Long) As String (read only)

Parameters Index: Zero-based index of the key.

KeyCount

Description Returns the number of keys.

Syntax KeyCount As Long (read only)

KeyIcon

Description Sets new value for the specified key or returns the key's value.

Syntax KeyIcon (Key As String) As String (read/write)

Parameters Key: Name of the key.

KeyParent

Description Returns the parent name of specified key index.

Syntax KeyParent (Index As Long) As String (read only)

Parameters Index: Zero-based key index.

MoveKey

Description Moves a key specified by its name to the NewParent specified by
its name.

Syntax MoveKey (Key As String, NewParent As String)

Parameters Key: Name of key that should be moved

 NewParent: Name of new parent, empty string in
case of moving it as a base key

ProjectFileName

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 166 of 207

Description Sets or returns the file name of the Project.

Syntax ProjectFileName As String (read/write)

RemoveClient

Description Removes a client specified by its name.

Syntax RemoveClient (ClientName As String)

Parameters ClientName: Name of client that should be removed

RemoveKey

Description Removes a key specified by its name.

Syntax RemoveKey (KeyName As String)

Parameters KeyName: Name of key that is removed.

SupervisedLearningDisabled

Description Sets or returns the state of supervised learning in Designer and
local Verifier workstations.

Syntax SupervisedLearningDisabled As Boolean (read/write)

TopDownEventSequence

Description Sets or returns the value of top-down event sequence.

Syntax TopDownEventSequence As Boolean (read/write)

Value

Description Returns the value of the specified key.

Syntax Value (Key As String, Parent As String, Client As
String) As String (read/write)

Parameters Key: Key name, which is assigned to the value.

 Parent: Parent name of the key.

 Client: Name of the client. Can be an empty string. In
that case the active client will be used.

Example

MyDBPath = Settings.Value(“DatabaseName”, “”, “”)

'now we can open the database

DB.Open(MyDBPath, …)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 167 of 207

3.8 SCBCdrScriptModule

3.8.1. Description
This is a global object at the project level. All script module events occurred at project level
belongs to this object.

3.8.2. Methods and Properties

ModuleName

Description Returns the name of the module that initialized ScriptModule.

The full list of values and under what circumstances they are set
are detailed below:

Runtime Server - ModuleName = Server

Web Verifier Client (v5 and above) - ModuleName = Verifier

Verifier Thick Client (v3 and above) - ModuleName = Verifier

Local Verifier Project - ModuleName = LocalVerifier

Learnset Manager Tool - ModuleName = PlainVerifier

Designer Runtime mode = Server

Designer Verifier test mode = Verifier

Designer Verifier train mode = Verifier

Designer Normal train mode = Designer

Designer Definition mode = Designer

Syntax ModuleName As String (read only)

Example ‘This example sets the global variable gblVerifierAsServer to true
if the Modulename contains VERIFIER

Private Sub Document_PreExtract(pWorkdoc As
SCBCdrPROJLib.SCBCdrWorkdoc)

If InStr(UCase(ScriptModule.ModuleName), “VERIFIER”) Then

gblVerifierAsServer = True

Else

gblVerifierAsServer = False

end if

End Sub

‘This example is a function which returns true if the Modulename
contains VERIFIER

Public Function fnIsVerifier As Boolean

If InStr(UCase(ScriptModule.ModuleName), “VERIFIER”) Then

fnIsVerifier = True

Else

fnIsVerifier = False

end if

End Function

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 168 of 207

ReadZone

Description This method can be used to read a zone on a CroImage object,
which settings are saved before in the ScanJobs' definition.

Syntax ReadZone (Image As ISCBCroImage, ZoneName As String)
As String

Parameters Image: [in] SCBCroImage object

 ZoneName: [in] Name of Zone which is read

ReadZoneEx

Description This method can be used to read a zone on a CroImage object,
which settings are saved before in the ScanJobs' definition.

Syntax ReadZoneEx (Image As ISCBCroImage, ZoneName As String,
Result As ISCBCroWorktext)

Parameters Image: [in] SCBCroImage object

 ZoneName: [in] Name of read zone

 Result: [in] Result of reading returned as
SCBCroWorktext object

3.9 SCBCdrScriptProject

3.9.1. Description

3.9.2. Methods and Properties

CurrentClient

Description This property retrieves and sets the "Client" attribute of the batch.

Syntax CurrentClient As String (read/write)

GetHostProperties

Description The method lets user retrieve information about the current
machine, application and Perceptive Intelligent Capture user.

Syntax GetHostProperties(appType as CDRApplicationName,
appSubtype as Long, appInstance as String, appUserName
as String, appIP as String, appMachineName as String,
appLicensee as String)

Parameters appType Applicationname represents the calling

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 169 of 207

application by a CDRApplicationName type.
The parameter can be read from script.

CDRApplicationName:

TANDesigner:

- represents Perceptive Intelligent Capture
Designer

TANLearnSetManager:

- represents Perceptive Intelligent Capture
Learn Set Manager

TANLocalVerifier:

- represents Perceptive Intelligent Capture
Verifier used as local project for SLW

TANRuntimeServer:

- represents Perceptive Intelligent Capture
Runtime Service Instance

TANUnknown:

- unknown application

TANVerifier:

- represents Perceptive Intelligent Capture
Verifier

TANWebVerifier:

- represents Perceptive Intelligent Capture
Web Verifier

 appSubType Only used for internal purposes

 appInstance The name of the Perceptive Intelligent
Capture Runtime Service Instancename, if
ApplicationName is TANRuntimeServer.

Not used for other applications.

 appUsername Login Name of the current Perceptive
Intelligent Capture user

Perceptive Intelligent Capture user for
Designer, Verifier, LSM, Web Verifier

Windows user for Runtime Server

 appIP IP address of the computer

 appMachineName Machine name that is running the script

 appLicensee Customer name of the used license file

Example The script below calls the GetHostProperties in the initialize event. The

method than returns information into variables as to where the script is

executed, who is executing it, and what application module is executing it.

Private Sub ScriptModule_Initialize(ByVal ModuleName As String)

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 170 of 207

 Dim appInstance As String

 Dim appSubtype As Long

 Dim appUserName As String

 Dim appIP As String

 Dim appMachineName As String

 Dim appLicensee As String

 Dim appType As CDRApplicationName

 Project.GetHostProperties(appType, appSubtype, appInstance,
appUserName, appIP, appMachineName, appLicensee)

End Sub

3.10 SCBCdrScriptAccess

3.10.1. Description
Perceptive Intelligent Capture provides a new public interface “SCBCdrScriptAccess” for
external access to the project and class level custom script pages. The new interface can
be queried from the main “SCBCdrProject” interface available in Perceptive Intelligent
Capture custom script. Using this interface it is possible to retrieve, modify and dump
project and class level scripts.

3.10.2. Methods and Properties

DumpAllPages

Description Dumps all script pages available in the project as a Unicode text
file.

Syntax DumpAllPages(FileName As String)

Parameters FileName: [in] name of the dump file.

Example ccess.DumpAllPages("Script Export_" & CStr(Format(Now, "DDMMYYYY
HHMM")) & ".sax") 'Export all script pages prior to modification

(Project and Classes).

ExportAllPages

Description CURRENTLY NOT SUPPORTED. Exports all available script
pages in a reimportable format to the specified folder.

Syntax ExportAllPages(FolderName As String)

Parameters FolderName: [in] name of the folder to save the script
pages to.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 171 of 207

ExportClassPage

Description CURRENTLY NOT SUPPORTED. Exports the specified script
page to a script dump file.

Syntax ExportClassPage(FolderName As String, ClassName As
String)

Parameters FolderName: [in] name of the folder to save the script page
to.

 ClassName: [in] name of the class to export the script for.

GetPageCode

Description Retrieves the project or specified class level script code.

Syntax GetPageCode(ClassName As String, ScriptCode As String)

Parameters ClassName: [in] name of the class.

 ScriptCode: [out] class script code.

ImportAllPages

Description CURRENTLY NOT SUPPORTED. Imports all available script
pages using script dumps from the specified folder.

Syntax ImportAllPages(FolderName As String)

Parameters FolderName: [in] name of the folder to load the script
pages from.

ImportClassPage

Description CURRENTLY NOT SUPPORTED. Imports the specified script
page from a script dump file.

Syntax ImportClassPage(FolderName As String, ClassName As
String)

Parameters FolderName: [in] name of the folder to load the script page
from.

 ClassName: [in] name of the class to import the script for.

SetPageCode

Description Assigns the project or specified class level script code.

Syntax SetPageCode(ClassName As String, ScriptCode As String)

Parameters ClassName: [in] name of the class.

Scripting Reference Guide Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)

Perceptive Intelligent Capture Page 172 of 207

 ScriptCode: [out] class script code.

Example theScriptAccess.SetPageCode(strClassName, "") 'Set new script code
(blank “”)

Scripting Reference Guide Chapter 4 (CDRADSLib)

Perceptive Intelligent Capture Page 173 of 207

Chapter 4 (CDRADSLib)

4.1 SCBCdrSupExSettings

4.1.1. Description
This collection contains the functions for the Associative Search engine.

4.1.2. Methods and Properties

ClearFilterAttributes

Description Clears all existing filters of the Multi-columnn Attribute Search.

Syntax .ClearFilterAttributes()

Example Dim theSupplierSettings As Object

Set theSupplierSettings = FieldAnalysissettings

Dim theAdsSettings As CDRADSLib.SCBCdrSupExSettings

Set theAdsSettings = theSupplierSettings

theAdsSettings.ClearFilterAttributes

AddFilterAttributes

Description Adds new filters for a chosen attribute of the Multi-column Attribute
search. Choose attributes from the data source of the Associative
Search Engine.

Note: The first two attributes are combined as logical OR, and the
additional ones that may be added are combined with logical AND.

Syntax .AddFilterAttribute(“Attribute Name”, “Attribute
Value”)

Parameters Attribute Name: Name of the attribute to be filtered

 Attribute Value Value of the attribute that is
searched for in the datasource

Example This example configures the Multi-column Attribute Search for use
with the Vendor search button of the Verifier Thick Client. The
VendorSearch button in Verifier is related to the Object: General,
Process: DialogFunc:
Dim theSupplierSettings As Object

Set theSupplierSettings = FieldAnalysissettings

Dim theAdsSettings As CDRADSLib.SCBCdrSupExSettings

Set theAdsSettings = theSupplierSettings

theAdsSettings.ClearFilterAttributes

theAdsSettings.AddFilterAttribute "SupplierName", "VAN"

theAdsSettings.AddFilterAttribute "SupplierName", "VAN3"

Scripting Reference Guide Chapter 4 (CDRADSLib)

Perceptive Intelligent Capture Page 174 of 207

The following example configures the extension for the filtering with
RTS in the VendorName (or VendorASSA) object preExtract event:
Private Sub VendorName_PreExtract(pField As
SCBCdrPROJLib.SCBCdrField, pWorkdoc As SCBCdrPROJLib.SCBCdrWorkdoc)

 Dim theSupplierSettings As CDRADSLib.SCBCdrSupExSettings

 Dim theDocClass As SCBCdrDocClass

 Dim theAnalysisSettings As ISCBCdrAnalysisSettings

 Dim theObject As Object

 Set
theDocClass=Project.AllClasses.ItemByName(pWorkdoc.DocClassName)

 theDocClass.GetFieldAnalysisSettings "VendorName","German",
theAnalysisSettings

 Set theObject = theAnalysisSettings

 Set theSupplierSettings = theObject

 theSupplierSettings.ClearFilterAttributes()

 theSupplierSettings.AddFilterAttribute "SupplierName", "VAN"

 theSupplierSettings.AddFilterAttribute "SupplierName", "VAN3"

End Sub

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 175 of 207

Chapter 5 Analysis Engines Object Reference

5.1 SCBCdrAssociativeDbExtractionSettings

5.1.1. Description
This interface covers all methods and properties that are required for controlling and
accessing the new universal format of the ASSA engine’s pool.

5.1.2. Type Definitions

CdrAutoUpdateType
This enumeration is used to specify the automatic import property.

Available Types Description
CdrAUTFile Automatic import from file for associative search field.

CdrAUTNone No automatic import for associative search field.

CdrAUTODBC Automatic import from ODBC source for associative search
field.

5.1.3. Method and Properties

AddColumn

Description Adds a new column field to the pool.

Syntax AddColumn (ColumnName As String, IsSearchField As
Boolean, NewColumnIndex As Long)

Parameters ColumnName: [in] Name of the column field.

 IsSearchField: [in] Boolean value that has to be set to true
when the inserted column field is a search
field.

 NewColumnIndex: [out] Index of the newly created entry in the
pool.

AddPhrase

Description Appends a new phrase to the list of phrases to be used for the
address analysis.

Syntax AddPhrase (Phrase As String, IsIncludePhrase As
Boolean)

Parameters Phrase: [in] This string variable contains the phrase
that is added to the list.

 IsIncludePhrase: [in] If the value of the Boolean variable is
true and the phrase is found, then the
resulting address will be accepted. If the

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 176 of 207

value of the Boolean variable is false and
the phrase is found, then the address will
not be accepted

ChangeEntry

Description Updates or inserts the content of the entry data to the specified
column.

Syntax ChangeEntry (ColumnName As String, EntryData As String)

Parameters ColumnName: [in] Name of the column that is changed.

 EntryData: [in] The content of the specified column is
updated with this data.

ClassNameFormat

Description Sets or reads the format definition for a document class name.

Syntax ClassNameFormat As String (read/write)

ColumnCount

Description Returns the number of columns of currently opened pool.

Syntax ColumnCount As Long (read only)

ColumnName

Description Returns or sets the name of the column by its index.

Syntax ColumnName (ColumnIndex As Long) As String (read/write)

Parameters ColumnIndex: [in] Index of the column to retrieve [zero-
based].

CommitAddEntry

Description After execution of StartAddEntry and ChangeEntry changes take
effect.

Use this method only in context with the StartUpdate, StartAddEntry,
ChangeEntry, Com mitAddEntry and CommitUpdate.

Syntax CommitAddEntry (NewIndex As Long)

Parameters NewIndex: [out] Index of new entry.

CommitUpdate

Description Closes and saves the currently opened pool.

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 177 of 207

Syntax CommitUpdate ()

EnableCandidateEvaluation

Description Sets / returns if candidate evaluation permitted.

Syntax EnableCandidateEvaluation As Boolean (read/write)

EntryCount

Description Returns the number of entries of the pool.

Syntax EntryCount As Long (read only)

EvalFirstPageOnly

Description Sets / returns if candidate evaluation is processed only for the first
page.

Syntax EvalFirstPageOnly As Boolean (read/write)

FieldContentsFormat

Description Sets / returns the format definition for the representation of the
engine results.

Syntax FieldContentsFormat As String (read/write)

FindLocation

Description Sets / returns if address analysis is enabled. If TRUE the position of
the address is found.

Syntax FindLocation As Boolean (read/write)

GeneratePool

Description Imports the pool from specified source by the property
AutomaticImportMethod.

Syntax GeneratePool ()

GeneratePoolFromCsvFile

Description Removes the previous pool and generates a new one using CSV file
designed in the new format.

Syntax GeneratePoolFromCsvFile ()

GeneratePoolFromODBC

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 178 of 207

Description Removes previous pool and generates a new one using ODBC
source using the parameters set on the property page.

Syntax GeneratePoolFromODBC ()

GetClassNameByID

Description Returns the formatted document class name for the pool entry
specified by its unique ID.

Syntax GetClassNameByID (IDHigh As Long, IDLow As Long,
ClassName As String)

Parameters IDHigh: [in] Upper part of 64 bit unique IDs.

 IDLow: [in] Lower part of 64 bit unique IDs.

 ClassName: [out] Formatted document class name for the
specified entry.

GetEntry

Description Returns the content of a field that is specified by its index and the
column name.

Syntax GetEntry (Index As Long, FieldName As String) As String

Parameters Index: [in] Index of the entry to be retrieved.

 FieldName: [in] Name of the column to be retrieved.

GetFormattedValueByID

Description Returns the formatted entry representation for the pool entry
specified by its unique ID.

Syntax GetFormattedValueByID (IDHigh As Long, IDLow As Long,
FormattedValue As String)

Parameters IDHigh: [in] Upper part of 64-bit unique ID.

 IDLow: [in] Lower part of 64-bit unique ID.

 FormattedValue: [out] Formatted entry representation for the
specified entry.

GetIDByIndex

Description Returns unique ID of an entry by index.

Syntax GetIDByIndex (Index As Long, IDHigh As Long, IDLow As
Long)

Parameters Index: [in] Zero-based index.

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 179 of 207

 IDHigh: [out] Upper part of 64-bit unique ID.

 IDLow: [out] Lower part of 64-bit unique ID.

GetIndexByID

Description Returns index of an entry by its unique ID.

Syntax GetIndexByID (IDHigh As Long, IDLow As Long, Index As
Long)

Parameters IDHigh: [in] Upper part of 64-bit unique ID.

 IDLow: [in] Lower part of 64-bit unique ID.

 Index: [out] Zero-based index.

GetSearchArea

Description Returns area on the document to search in

Syntax GetSearchArea (SearchAreaIndex As Long, Left As Long,
Top As Long, Width As Long, Height As Long)

Parameters SearchAreaIndex: Zero-based index of search area; at the
moment two areas are supported.

 Left: Distance in % from left border of document.

 Top: Distance in % from top of document.

 Width: Width in % of search area.

 Height: Height in % of search area.

IdentityColumn

Description Sets /returns the name of column of unique ID.

Syntax IdentityColumn As String (read/write)

ImportFieldNames

Description Sets / returns if column names are taken from first line of CSV file.

Syntax ImportFieldNames As Boolean (read/write)

ImportFileName

Description Sets / returns the name of CSV file that should be imported.

Syntax ImportFileName As String (read/write)

ImportFileNameRelative

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 180 of 207

Description Sets / returns if the name of CSV file should be stored relative to the
path of project file.

Syntax ImportFileNameRelative As Boolean (read/write)

IsPhraseIncluded

Description Sets / returns if a phrase to find address is sufficient.

Syntax IsPhraseIncluded (PhraseIndex As Long) As Boolean
(read/write)

Parameters PhraseIndex: [in] Index of phrase [zero-based].

IsSearchField

Description Sets / returns if a field is used for associative search.

Syntax IsSearchField (ColumnIndex As Long) As Boolean
(read/write)

Parameters ColumnIndex: [in] Index of column [zero-based]

LastImportTimeStamp

Description Returns the timestamp for the last import.

Syntax LastImportTimeStamp As Date (read only)

MaxCandidates

Description Sets / returns the maximum number of results of the associative
search engine.

Syntax MaxCandidates As Long (read/write)

MinDistance

Description Sets / returns the required minimum distance to next best candidate
for a valid result.

Syntax MinDistance As Double (read/write)

MinRelevance

Description This property sets or returns the minimum relevance for search
results, default value is 0.0.

Syntax MinRelevance As Double (read/write)

MinThreshold

Description Sets / returns the required minimum value for a valid engine result.

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 181 of 207

Syntax MinThreshold As Double (read/write)

ODBCName

Description This property sets / returns the name of the ODBC source.

Syntax ODBCName As String (read/write)

Password

Description Sets / returns the password of the ODBC source.

Syntax Password As String (read/write)

Phrase

Description Sets / returns phrase by its index.

Syntax Phrase (PhraseIndex As Long) As String (read/write)

PhrasesCount

Description Returns the number of phrases used for address analysis.

Syntax PhrasesCount As Long (read only)

PoolName

Description Sets / returns the name of the associative search pool.

Syntax PoolName As String (read/write)

PoolPath

Description Sets / returns the name of path of the associative search pool.

Syntax PoolPath As String (read/write)

PoolPathRelative

Description Sets / returns if the pool should be saved relative to the path of the
project.

Syntax PoolPathRelative As Boolean (read/write)

ProjectPath

Description Returns the path of the project file.

Syntax ProjectPath As String (read only)

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 182 of 207

RemovePhrase

Description Removes a phrase from list of phrases for address analysis
specified by its index.

Syntax RemovePhrase (PhraseIndex As Long)

Parameters PhraseIndex: [in] Index of the phrase that should be
deleted [zero-based].

SavePoolInternal

Description Sets / returns if pool should be saved within the project file or as
separate files.

Syntax SavePoolInternal As Boolean (read/write)

Separator

Description Sets / returns separator, either semicolon or comma, used for csv
file.

Syntax Separator As String (read/write)

SetSearchArea

Description Sets area on the document to search in.

Syntax SetSearchArea (SearchAreaIndex As Long, Left As Long,
Top As Long,
Width As Long, Height As Long)

Parameters SearchAreaIndex: Zero-based index of search area; at the
moment two areas are supported.

 Left: Distance in % from left border of
document.

 Top: Distance in % from top of document.

 Width: Width in % of search area.

 Height: Height in % of search area.

SQLQuery

Description Sets /returns an SQL statement used to import ODBC source.

Syntax SQLQuery As String (read/write)

StartAddEntry

Description Prepares the insertion of a new entry to the associative search pool.

Scripting Reference Guide Chapter 5 Analysis Engines Object Reference

Perceptive Intelligent Capture Page 183 of 207

Syntax StartAddEntry ()

StartUpdate

Description Generates and opens a new empty pool, or opens an existing pool
for the update.

Syntax StartUpdate (RemoveExistingPool As Boolean)

Parameters RemoveExistingPool: [in] When this Boolean variable is set to
true, than the old pool is removed,
otherwise the existing pool is supposed to
be updated by further “AddPhrase” calls.
Note that in this case, it should not be
required to call “AddColumn” function,
because the former column information
has to be taken.

Moreover, in case this parameter is true,
and the “AddColumn” method is invoked,
the “AddColumn” method will report an
error because it must be prohibited to
modify the existing column.

Username

Description Sets / returns username required for the login into the ODBC source.

Syntax Username As String (read/write)

VendorTypeColumn

Description Sets / returns the column that defines the vendor type. The
vendorType column must contain a value in the area of 0-2. 0
means that no class can be created for that vendor via SLW. 1
Allows one document for that vendor to be trained, while 2 allows
unlimited training.

Syntax VendorTypeColumn As String (read/write)

Scripting Reference Guide Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)

Perceptive Intelligent Capture Page 184 of 207

Chapter 6 StringComp Object Reference
(SCBCdrSTRCOMPLib)

6.1 SCBCdrStringComp

6.1.1. Description
This component provides several implementations of string compare algorithms.

6.1.2. Type Definitions

CdrCompareType
String Compare Algorithm

Available Types Description
CdrTypeLevenShtein Levenshtein algorithm

CdrTypeRegularExpression Regular expression

CdrTypeSimpleExpression Simple expression

CdrTypeStringComp Exact string compare

CdrTypeTrigram Trigram algorithm

6.1.3. Methods and Properties

CaseSensitive

Description This option controls if the compare algorithm should work case
sensitive.

Syntax CaseSensitive As Boolean (read/write)

CompType

Description Selects the compare algorithm used for the next call of Distance.

Syntax CompType As CdrCompareType (read/write)

Distance

Description Perform the selected string compare algorithm. The search
expression and the compare method must be initialized before. The
return value is the distance between the search expression and the
string parameter, which is between 0.0 and 1.0. A distance of 0.0
means that the search expression matches the string parameter
exactly and a distance of 1.0 means that there is no match at all.
Most algorithms can also return a value between 0.0 and 1.0 which
provides the possibility to compare strings in a fault tolerant way.

Syntax Distance (String As String, Distance As Double)

Scripting Reference Guide Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)

Perceptive Intelligent Capture Page 185 of 207

Parameters String: [in] Specifies the string which should be compared
with the search expression.

 Distance: [out] Contains the distance of the compare
operation, which will be between 0.0 and 1.0.

LevDeletions

Description Returns the count of deletions calculated by the last Distance
function.

Syntax LevDeletions As Single (read only)

LevInsertions

Description Returns the count of insertions calculated by the last Distance
function.

Syntax LevInsertions As Single (read only)

LevRejects

Description Returns the count of rejects calculated by the last Distance function.

Syntax LevRejects As Single (read only)

LevReplacements

Description Returns the count of replacements calculated by the last Distance
function.

Syntax LevReplacements As Single (read only)

LevSame

Description Returns the count of equal characters calculated by the last
Distance function.

Syntax LevSame As Single (read only)

LevTraceMatrix

Description Returns the Levenshtein trace matrix calculated by the last Distance
function.

Syntax LevTraceMatrix As String (read only)

LevTraceResult

Description Returns the Levenshtein trace result calculated by the last Distance
function.

Scripting Reference Guide Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)

Perceptive Intelligent Capture Page 186 of 207

Syntax LevTraceResult As String (read only)

MatchEndPosition

Description Returns the matching end position calculated by the last Distance
function.

Syntax MatchEndPosition As Single (read only)

MatchStartPosition

Description Returns the matching start position calculated by the last Distance
function.

Syntax MatchStartPosition As Single (read only)

SearchExpression

Description Contains the search expression which should be used for the next
compare operation.

Syntax SearchExpression As String (read/write)

ValidateSearchExpression

Description Performs a syntax check for the specified compare method and
search expression.

Syntax ValidateSearchExpression (Type As CdrCompareType,
SearchExpression As String)
As Boolean

Parameters Type: Compare method which should be used
for validation.

 SearchExpression: Search expression which should be
validated.

6.2 SCBCdrEmailProperties

6.2.1. Description
When importing a MSG file into a Workdoc, the most important properties of the e-mail are
stored in the Workdoc and available in the custom script via the
“ISCBCdrEmailProperties” interface that can be queried from the SCBCdrWorkdoc
interface.

6.2.2. Properties

CdrMessageSeverity
This type defines the different message severities.

Available Types Description

Scripting Reference Guide Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)

Perceptive Intelligent Capture Page 187 of 207

CDRSeverityLogFileOnly Store the message to the application log file only.

CDRSeveritySystemMonitoring Store the message in the log file and forward it to
the host instance’s MMC console and to the
System Monitoring service of the Runtime Server.
This option is applicable when the call is executed
from within the Runtime Server application only.

CDRSeverityEmailNotificatio Store the message in the log file and forward it to
the MMC console / System Monitoring view and
send as an e-mail to the system administrators
via System Monitoring service of Runtime Server.
This option is applicable when the call is executed
from within the Runtime Server application only.

6.3 SCBCdrLicenseInfoAccess

6.3.1. Description
The Licensing Information Access object allows direct retrieval to the active licensing
object.

The Developer would be able to directly query any licensing component in custom script.

This object is available from Version 5.x and above.

6.3.2. Methods

GetLicenseCounterByID

Description Returns the license counter information for any given active/inactive
license counter.

An active license counter is one that is specifically identified in the
license file and is enforced by the licensing mechanism.

Syntax GetLicenseCounterByID(CounterID As
SCBCdrPROJLib.CDRLicenseCounter, Count As Long,
Active As Boolean)

Parameters CounterID: Depicts which counter to retrieve values for. The ID
is determined by the CdrLicenseCounter project
data type.

 Count: The returned utilization value from the licensing
mechanism. This stores the value of usage.

 Active: Identifies if the license counter should be active, or
specified in the license file.

See Also CdrLicenseCounter, CdrLicenseFeatureName,
GetLicenseCounterByName, GetLicenseValueByID,
GetLicenseValueByName, ActivateLicensing

Example An example to retrieve the OCRed count of documents in script.
 ensingInterface2 As SCBCdrPROJLib.SCBCdrLicenseInfoAccess

Scripting Reference Guide Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)

Perceptive Intelligent Capture Page 188 of 207

Dim theObject2 As Object
Dim vValue2 As Long
Dim vValue3 As Variant
Dim LicInfoMsg2 As String
vValue2=0
vValue3=0
Project.ActivateLicensing "Designer","C:\Program Files
(x86)\Brainware\Components\Cairo"
Set theObject2 = Project
Set theLicensingInterface2 = theObject2
' theLicensingInterface2.GetLicenseCounterByID(TLCPeriodPagesOCRed,
vValue2, False)
' theLicensingInterface2.GetLicenseCounterByID(TLCTotalPagesOCRed,
vValue3, False)
'
theLicensingInterface2.GetLicenseCounterByID(TLCFineReaderRemainingUnits,
vValue2, True)
theLicensingInterface2.GetLicenseCounterByName ("Overall OCRed Pages",
vValue2, True)
LicInfoMsg2 = "OCRed count - " & CStr(vValue2)
MsgBox(LicInfoMsg2, vbOkOnly,"Get License Count By ID")

GetLicenseCounterByName

Description Returns the license counter information for any given
active/inactive license counter.

An active license counter is one that is specifically identified in
the license file and is enforced by the licensing mechanism.

Syntax GetLicenseCounterByName(CounterName As String,
Count As Long, Active As Boolean)

Parameters CounterName - Depicts which counter to retrieve values for.
The Name is the same as shown in the license file.

 Count: The returned utilization value from the licensing
mechanism. This stores the value of usage.

 Active: Identifies if the license counter should be active, or
specified in the license file.

See Also CdrLicenseCounter, CdrLicenseFeatureName,
GetLicenseCounterByID, GetLicenseValueByID,
GetLicenseValueByName, ActivateLicensing

Example An example to retrieve the OCRed count of documents in script.

 ensingInterface As SCBCdrPROJLib.SCBCdrLicenseInfoAccess
Dim theObject As Object
Dim vValue1 As Variant
Dim LicInfoMsg As String

Project.ActivateLicensing "Designer",""'

Set theObject = Project
Set theLicensingInterface = theObject

theLicensingInterface.GetLicenseCounterByName("OCRed Pages per
Day", vValue1, True)

LicInfoMsg = "OCRed count - " & CStr(vValue1)

Scripting Reference Guide Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)

Perceptive Intelligent Capture Page 189 of 207

MsgBox(LicInfoMsg, vbOkOnly,"Get License Count By Name")

GetLicenseValueByID

Description Returns the license counter information for any given item in the
license file.

Syntax GetLicenseValueByID(PropertyID As
SCBCdrPROJLib.CDRLicenseFeatureName, Value As
Variant)

Parameters PropertyID: Depicts which item to retrieve values for.
Various options can be found in
CdrLicenseFeatureName.

 Value: The returned value from the licensing
mechanism. The data type varies depending on
the item being returned.

See Also CdrLicenseCounter, CdrLicenseFeatureName,
GetLicenseCounterByID, GetLicenseCounterByName,
GetLicenseValueByName, ActivateLicensing

Example An example to retrieve the Email Importing flag in the license
file.

 ensingInterface As SCBCdrPROJLib.SCBCdrLicenseInfoAccess
Dim theObject As Object
Dim vValue1 As Variant
Dim LicInfoMsg As String

Project.ActivateLicensing "Designer",""'

Set theObject = Project
Set theLicensingInterface = theObject

theLicensingInterface.GetLicenseValueByID(CDRLfnEMailsImporting,
vValue1)
 LicInfoMsg = "Email Importing - " & CStr(vValue1)

MsgBox(LicInfoMsg, vbOkOnly,"Get License Value By ID")

GetLicenseValueByName

Description Returns the license counter information for any given item in the
license file.

Syntax GetLicenseValueByName(PropertyName As String,
Value As Variant)

Parameters PropertyName: Depicts which item to retrieve values for.
Various options can be found in the license
file. The text to be entered for this parameter
should be the exact same text as appears in
the license file.

 Value: The returned value from the licensing
mechanism. The data type varies depending

Scripting Reference Guide Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)

Perceptive Intelligent Capture Page 190 of 207

on the item being returned.

See Also CdrLicenseCounter, CdrLicenseFeatureName,
GetLicenseCounterByID, GetLicenseCounterByName,
GetLicenseValueByName, ActivateLicensing

Example An example to retrieve the Email Importing flag in the license
file.

 ensingInterface As SCBCdrPROJLib.SCBCdrLicenseInfoAccess
Dim theObject As Object
Dim vValue1 As Variant
Dim LicInfoMsg As String

Project.ActivateLicensing "Designer",""'

Set theObject = Project
Set theLicensingInterface = theObject

theLicensingInterface.GetLicenseValueByName("Serial", vValue1)

LicInfoMsg = "Primary Dongle Serial Number - " & CStr(vValue1)

MsgBox(LicInfoMsg, vbOkOnly,"Get License Value By Name")

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 191 of 207

Chapter 7 Cedar Verifier Component Library

7.1 SCBCdrVerificationForm

7.1.1. Description
This interface is used to set properties specific for verification form object, as well as to set
default properties for embedded elements, like verification fields, labels, tables, buttons,
and so on.

7.1.2. Methods and Properties

DefaultLabelFont

Description Sets / returns default font for all label elements available on this
verification form.

Syntax DefaultLabelFont As StdFont

DefaultLabelFontColor

Description Sets / returns default color for all label elements available on this
verification form.

Syntax DefaultLabelFontColor As OLE_COLOR

Example Dim clrDefaultColor As OLE_COLOR

clrDefaultColor = -1

theForm.VerificationLabels.ItemByIndex(lNextLabelIndex).FontColor =
clrDefaultColor

DefaultLabelBackgroundColor

Description Sets / returns default background color for all label elements
available on this verification form.

Syntax DefaultLabelBackgroundColor As OLE_COLOR

DefaultFieldFont

Description Sets / returns default font for all verification field elements available
on this verification form.

Syntax DefaultFieldFont As StdFont

DefaultFieldFontColor

Description Sets / returns default color for all verification field elements available
on this verification form.

Syntax DefaultFieldFontColor As OLE_COLOR

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 192 of 207

DefaultElementBackgroundColorValid

Description Sets / returns default color for all valid (valid in terms of validation
status) field elements available on this verification form.

Syntax DefaultElementBackgroundColorValid As OLE_COLOR

DefaultElementBackgroundColorInvalid

Description Sets / returns default color for all invalid (invalid in terms of validation
status) field elements available on this verification form.

Syntax DefaultElementBackgroundColorInvalid As OLE_COLOR

FormBackgroundColor

Description Sets / returns background color for the form.

Syntax FormBackgroundColor As OLE_COLOR

FormBackgroundColorDI

Description Sets / returns background color for the Direct Input control on the
form, i.e. for the area around the Direct Input field.

Syntax FormBackgroundColorDI As OLE_COLOR

7.2 SCBCdrVerificationField

7.2.1. Description
This interface is used to identify verification properties specific for header fields’ validation
elements, like drop down lists, check-boxes, and normal edit fields.

Note: In order to get the OLE_COLOR object for the types below, add OLE Automation as
a reference.

7.2.2. Type Definitions

CdrVerifierFieldType

Description The Verifier Field type.

This type interface is a member of the Cedar Verifier Project
library.

Available Types CDRVerifierFieldTypeCheckbox – Checkbox field type, value = 2.

 CDRVerifierFieldTypeCombobox – Combobox field type, value =
3.

 CDRVerifierFieldTypeTableCheckBoxCell – Table Checkbox Cell
field type, value = 4.

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 193 of 207

 CDRVerifierFieldTypeTextMultiline – Multiline Text field type,
value = 1.

 CDRVerifierFieldTypeTextSingleline – Single Line Text field type,
value = 0.

7.2.3. Methods and Properties

AutoCompletionEnabled

Descripti
on

 This property enables / disables the field text Auto Completion for a
verification field.

Attribute Read/Write

Example The example below turns Auto Completion on for the Invoice Number field.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").AutoCo
mpletionEnabled = True

BackgroundColorInvalid

Descripti
on

 This property sets the color for the verification field to display to the user
when the field required manual verification. When the field is Invalid in
Verifier, the color that is set will display to the user.

By default, the invalid background color of the field is red.

Attribute Read/Write

See Also BackgroundColorValid

Example The example below turns the Invalid color for Invoice Number field to gray
if it is Invalid.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("InvoiceNo").BackgroundCo
lorInvalid = RGB (192, 129, 129)

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 194 of 207

BackgroundColorValid

Descripti
on

 This property sets the color for the verification field to display to the user
when the field does not require manual verification. When the field is Valid
in Verifier, the color that is set will display to the user.

By default, the invalid background color of the field is red.

Attribute Read/Write

See Also BackgroundColorInvalid

Example The example below turns the Invalid color for Invoice Number field to gray if
it is Valid.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Backgro
undColorValid = RGB (192, 129, 129)

Font

Description This property sets the Font for the content of the verification field.

Note: In order to get the StdFont object, add OLE Automation as a
reference.

Attribute Read/Write

See Also FontColor

Example The example below sets the Font for Invoice Number field.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim DefaultFieldFont As New StdFont

DefaultFieldFont.Bold = False 'Set Font attributes

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Fon
t = DefaultFieldFont

FontColor

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 195 of 207

Description This property sets the Font Color for the content of the verification field.

Attribute Read/Write

See Also Font

Example The example below sets the FontColor for Invoice Number field to gray.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Fon
tColor = RGB (192, 129, 129)

Invisible

Description This property determines if the field is visible or hidden from the Verifier
/ Web Verifier form. The developer uses script options to hide or display
the field from the verifier user. For the Web Verifier this method is used
in the VerifierFormload event.

Attribute Read/Write

Example The example below hides the Invoice Number field from the verifier
user.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").In
visible = True

' Update the form

theVerificationForm.RepaintControls

Left

Description This property provides the left position of the field on the Verifier form.

Attribute Read/Write

See Also Top, Width

Example The example below retrieves the Left position of the Invoice Number

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 196 of 207

field from Verifier Form.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim LeftPos As Integer

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

LeftPos =
theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Lef
t

Name

Description This property provides the Name of the field on the Verifier form.

Attribute Read

Example The example below retrieves the Name of the Invoice Number field
from Verifier Form.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim FieldName As String

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

FieldName =
theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Nam
e

ReadOnly

Description This property determines if the verification field on the Verifier / Web
Verifier form is editable or Read Only. For the Web Verifier use this
method in the VerifierFormLoad event.

Setting the property to True will make the field non-editable.

Attribute Read / Write

Example The example below sets the Invoice Number field as Read Only on the
Verifier Form.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 197 of 207

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Rea
dOnly = True

theVerificationForm.RepaintControls ' Update the form UI

TabIndex

Description This property allows the scripter to set the tab sequence number of the
verification field on the Verifier form.

The Tab sequence is typically configured on the verification form in
Designer, this script method allows the scripter to change the sequence
number to re-ordering TAB sequence of fields.

Attribute Read / Write

Example The example below sets the Invoice Number field tab sequence on the
Verifier Form.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Tab
Index = 5

Top

Description This property provides the top position coordinates of the field on the
Verifier form.

The scripter may choose to reorder positional information of the field if
another element is being hidden. Using the RepaintControls method,
the form UI will be updated with the changes made.

Attribute Read/Write

See Also Left, Width, RepaintControls

Example The example below retrieves the Top position of the Invoice Number
field from Verifier Form.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim TopPos As Integer

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 198 of 207

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

TopPos =
theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Top

Type

Description This property provides the Field Type information of the field on the
Verifier form.

The scripter may choose to review information of the field type.

Attribute Read

See Also CdrVerifierFieldType

Example The example below retrieves the Field Type Information of the Invoice
Number field from Verifier Form.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim FieldInfo As CdrVerifierFieldType

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

FieldInfo =
theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Wid
th

Width

Description This property provides the Width size information of the field on the
Verifier form.

The scripter may choose to reorder or resize positional information of the
field if another element is being hidden. Using the RepaintControls
method, the form UI will be updated with the changes made.

Attribute Read/Write

See Also Left, Top, RepaintControls

Example The example below retrieves the Width Information of the Invoice
Number field from Verifier Form.
Dim theVerificationProject As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim WidthInfo As Integer

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 199 of 207

theVerificationProject.AllVerificationForms.ItemByName("Invoices")

WidthInfo =
theVerificationForm.VerificationFields.ItemByName("Field_InvoiceNo").Width

7.3 SCBCdrVerificationTable

7.3.1. Description
This interface is used to identify verification properties specific for table validation elements.

7.3.2. Methods and Properties

FontFont

Description Sets / returns font settings for the individual table field element.

Syntax FontFont As StdFont

BackgroundColorValid

Description Sets / returns background color for the individual verification table
element, when the table cell is valid in terms of current validation
status.

Syntax BackgroundColorValid As OLE_COLOR

BackgroundColorInvalid

Description Sets / returns background color for the individual verification table
element, when the table cell is invalid in terms of current validation
status.

Syntax BackgroundColorInvalid As OLE_COLOR

HeaderFont

Description Sets / returns font settings for all header buttons of the table field
element, including row header buttons, column header buttons and the
table header button (small control in the left-top corner of the table).

Syntax HeaderFont As StdFont

HeaderFontColor

Description Sets / returns font color for the header buttons of the table field
element, including row header buttons and column header buttons.

Syntax HeaderFontColor As OLE_COLOR

HeaderBackgroundColor

Description Sets / returns background color for all header buttons of the table field
element, including row header buttons, column header buttons, and the

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 200 of 207

table header button.

Syntax HeaderBackgroundColor As OLE_COLOR

7.4 SCBCdrVerificationButton

7.4.1. Description
This interface is used to set verification properties specific for all custom buttons defined on
a verification form.

7.4.2. Methods and Properties

Font

Description Sets / returns font settings (name, type, and styles) for the individual
custom button control.

Syntax Font As StdFont

FontColor

Description Sets / returns font color for the individual custom button control.

Syntax FontColor As OLE_COLOR

BackgroundColor

Description Sets / returns background color for the individual custom button control.

Syntax BackgroundColor As OLE_COLOR

7.5 SCBCdrVerificationLabel

7.5.1. Description
This object is part of the Cedar Verifier Component Library. It enables the scripter to
manipulate the verifier form.

Cedar Verifier Component Library is not enabled by default. This component can be added
to the script references for any project class.

The Cedar Verification Label Object allows for the manipulation of the field for the verifier
user (eg Font and color that appears when a user views a field label on the verifier form).

7.5.2. Properties

BackgroundColor

Descriptio
n

 This property sets the color for the verification text label to display to the
user.

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 201 of 207

By default, the background color of the field is gray.

Syntax BackgroundColor As OLE_COLOR

Attribute Read/Write

Example The example below turns the color for Invoice Number label to gray.
 ificationProject As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Backgro
undColor = RGB (192, 129, 129)

Font

Description This property sets the Font for the content of the verification field label.

Note: In order to get the StdFont object, add OLE Automation as a
reference.

Syntax Font As StdFont

Attribute Read/Write

See Also FontColor

Example The example below sets the Font for Invoice Number field label.
 ificationProject As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim DefaultLabelFont As New StdFont

DefaultLabelFont.Bold = False 'Set Font attributes

'Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Font
= DefaultLabelFont

FontColor

Descriptio
n

 This property sets the Font Color for the content of the verification field
label.

Note: In order to get the OLE_COLOR object, add OLE Automation as a
reference.

Syntax FontColor As OLE_COLOR

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 202 of 207

Attribute Read/Write

See Also Font

Example The example below sets the FontColor for Invoice Number field label to
blue.

 ificationProject As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").FontCo
lor = RGB (0, 0, 255)

Invisible

Descriptio
n

 This property determines if the field label is visible or hidden on the Verifier
form. The developer may script options to hide or display the field label
from the verifier user.

Attribute Read/Write

Example The example below hides the Invoice Number field label from the verifier
user.
Dim theVerificationProject As

DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Invisib
le = True

' Update the form

theVerificationForm.RepaintControls

Left

Description This property provides the left position of the field on the Verifier form.

Attribute Read/Write

See Also Top, Width

Example The example below retrieves the Left position of the Invoice Number
field label from Verifier Form.
Dim theVerificationProject As

DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 203 of 207

DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim LeftPos As Integer

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

LeftPos =
theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Left

Name

Description This property provides the Name of the field label on the Verifier form.

Attribute Read

Example The example below retrieves the Name of the Invoice Number Label
field from Verifier Form.
Dim theVerificationProject As

DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim FieldName As String

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

FieldName =
theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Name

Text

Description This property allows the scripter to set the text of the verification field
label on the Verifier form.

Attribute Read / Write

Example The example below sets the Invoice Number field tab sequence on the
Verifier Form.
Dim theVerificationProject As

DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Text
= “Invoice Number”

Scripting Reference Guide Chapter 7 Cedar Verifier Component Library

Perceptive Intelligent Capture Page 204 of 207

Top

Description This property provides the top position coordinates of the field label on
the Verifier form.

The scripter may choose to reorder positional information of the field
label if another element is being hidden. Using the RepaintControls
method, the form UI will be updated with the changes made.

Attribute Read/Write

See Also Left, Width, RepaintControls

Example The example below retrieves the Top position of the Invoice Number
field from Verifier Form.
Dim theVerificationProject As

DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As
DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim TopPos As Integer

 ' Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

TopPos =
theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Top

Width

Description This property provides the Width size information of the field label on the
Verifier form.

The scripter may choose to reorder or resize positional information of the
field label if another element is being hidden. Using the RepaintControls
method, the form UI will be updated with the changes made.

Attribute Read/Write

See Also Left, Top, RepaintControls

Example The example below retrieves the Width Information of the Invoice
Number field label from Verifier Form.
Dim theVerificationProject As

DISTILLERVERIFIERCOMPLib.SCBCdrVerificationProject

Dim theVerificationForm As DISTILLERVERIFIERCOMPLib.SCBCdrVerificationForm

Dim WidthInfo As Integer

'Request the main form

Project.GetVerifierProject theVerificationProject

Set theVerificationForm =
theVerificationProject.AllVerificationForms.ItemByName("Invoices")

WidthInfo =
theVerificationForm.VerificationLabels.ItemByName("Label_InvoiceNo").Width

Scripting Reference Guide Chapter 8 Password Encryption for Database Connection Strings

Perceptive Intelligent Capture Page 205 of 207

Chapter 8 Password Encryption for Database
Connection Strings

The application architecture of Perceptive Intelligent Capture makes it very important to be
able to hide sensitive security information, such as DB access password, stored in
Perceptive Intelligent Capture or custom project configuration files.

The same requirement also applies to the database connection strings in the Perceptive
Intelligent Capture project INI files that often contain multiple connection strings to different
database instances (like for Visibility reporting or custom databases) with unencrypted
password info. These INI files may not reside directly on the local Verifier workstation, but
still can be easily accessed by the Verifier users, because at least the read-only access to
the Perceptive Intelligent Capture project directory is a requirement for Perceptive
Intelligent Capture applications.

Below are the steps to implement password encryption for custom configuration files used
when loading Perceptive Intelligent Capture projects:

8.1 Master Project Side (Project Primary Developer)

Prerequisites
Before you start please request a pair of RSA encryption keys from Perceptive Customer
Support. In terms of testing you can though use the pair of test keys below. However, do
request a new pair before releasing your master project to the others.

Keep your private key safe - do NOT provide to anyone else! Only the public key
should be distributed to those who use your project for custom implementations!

Test Public Key
<RSAKeyValue><Modulus>vJ+W7SuXuvOrWVoy4tPrbfLCuoHElo750cpTuEzLPk6iz6bHAodPVgLFaOEK+XMMS2G5z+6
961vuQsDGUt+O1Ag1PiTXCa6rrAaeCaaDO4HI8Mmpw0OkUZEfCZpTTYCYQPfZlgokwomF6VDSB9dlUS430IT0gctQY1b5
iM4MqT0=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>

Test Private Key
<RSAKeyValue><Modulus>vJ+W7SuXuvOrWVoy4tPrbfLCuoHElo750cpTuEzLPk6iz6bHAodPVgLFaOEK+XMMS2G5z+6
961vuQsDGUt+O1Ag1PiTXCa6rrAaeCaaDO4HI8Mmpw0OkUZEfCZpTTYCYQPfZlgokwomF6VDSB9dlUS430IT0gctQY1b5
iM4MqT0=</Modulus><Exponent>AQAB</Exponent><P>8SRHEvT5Bn2paRHSDR9yCQb7WGYE9PbeHzuqwH6iWa0LNYJ
rSrhhUeCEpwlPLQWQq10KmMZgG0+Br4nuBMmMHQ==</P><Q>yD7l9fjB/MJWYaV3LcEzY286Q+Xvo74i6THvHkKqB1NKY
GcN9xF9d8XbiUQNgBZ/4F02T6mFeYDO32KFVRXHoQ==</Q><DP>nRDTFn7nwRmSgfRwi8minkyk5DQ3IFO35EIZ+x3Ao4
Z52ZWkStwDz6/c12vR3XJVg7irkU0NBlzoDK1bklSw5Q==</DP><DQ>B3xieGmORva05/2ZkPpSA3ubAALOjJ6FC5a0S7
tOQ+vXMfdoTD45JIsfA+ipYIp2yVpyt1OtC7fHBA7Y0S95QQ==</DQ><InverseQ>4S1xqlXK9f1rawGCbFWOVp6lz1fC
oQ8RfyDE87/G/pUilHRJV2acBAcngY3c/MRMKrXQb8lx99k7dENUYc8ywQ==</InverseQ><D>KAL6cwkCQKgbuvKFRNS
LZmFOqV2JpB5kI/p1U+0GWAs6Qi4wnPqy+53O3naOa2faPctXLSKJqvlvSz21VDMUCsyphvOSxBtc1cZHJp4ueQPA7u+q
rIJaDY1RhlAVoqNfCJFX6+McVJ+I/X+mZOCtdUaCuAoNn014UYOaMujYDQE=</D></RSAKeyValue>

Implementation Guidelines
1. Split the connection string in your configuration files to encrypted and non-encrypted

parts.

a. Example of connection string of "BW Packaged.ini" before splitting:
SQL_VL_01_ConnectionString=Provider=SQLOLEDB.1;Password=alexey 123456789;Persist
Security Info=True;User ID=alexey;Initial Catalog=Visibility;Data Source=KIR-AE-NB-
03\SQLSERVER2008R2

b. Example of connection string of "BW Packaged.ini" before splitting (the red part of
the example below is now packaged as an extended new variable - see the red part
below):

Scripting Reference Guide Chapter 8 Password Encryption for Database Connection Strings

Perceptive Intelligent Capture Page 206 of 207

SQL_VL_01_ConnectionString=Provider=SQLOLEDB.1;Persist Security Info=True;User
ID=alexey;Initial Catalog=Visibility;Data Source=KIR-AE-NB-03\SQLSERVER2008R2

SQL_VL_01_ConnectionPassword=encrypted_password_is_to_be_placed_here

2. Open your master project in Designer, run script editor, open the script page, where
you would like to implement connection string encryption and add the Reference to
"CdrCrypt (5.3)" type library:

Note: If it does not show up in the list of libraries, click on "Browse..." button, browse to the
.\Application\bin and open the CdrCrypt.tlb.

3. At the place of the same script page, where connection string is supposed to be read
from the configuration (INI) file and then used further to connect to the database add a
script code, similar to the one below:
 Dim theCedarCryptographyHelper As New CdrCrypt.RSACodecInt

 Dim strEncryptedPassword As String

 Dim strOpenPassword As String

 Dim strPrivateKey As String

 strPrivateKey =
"<RSAKeyValue><Modulus>vJ+W7SuXuvOrWVoy4tPrbfLCuoHElo750cpTuEzLPk6iz6bHAodPVgLFaOEK+XMMS
2G5z+6961vuQsDGUt+O1Ag1PiTXCa6rrAaeCaaDO4HI8Mmpw0OkUZEfCZpTTYCYQPfZlgokwomF6VDSB9dlUS430
IT0gctQY1b5iM4MqT0=</Modulus><Exponent>AQAB</Exponent><P>8SRHEvT5Bn2paRHSDR9yCQb7WGYE9Pb
eHzuqwH6iWa0LNYJrSrhhUeCEpwlPLQWQq10KmMZgG0+Br4nuBMmMHQ==</P><Q>yD7l9fjB/MJWYaV3LcEzY286
Q+Xvo74i6THvHkKqB1NKYGcN9xF9d8XbiUQNgBZ/4F02T6mFeYDO32KFVRXHoQ==</Q><DP>nRDTFn7nwRmSgfRw
i8minkyk5DQ3IFO35EIZ+x3Ao4Z52ZWkStwDz6/c12vR3XJVg7irkU0NBlzoDK1bklSw5Q==</DP><DQ>B3xieGm
ORva05/2ZkPpSA3ubAALOjJ6FC5a0S7tOQ+vXMfdoTD45JIsfA+ipYIp2yVpyt1OtC7fHBA7Y0S95QQ==</DQ><I
nverseQ>4S1xqlXK9f1rawGCbFWOVp6lz1fCoQ8RfyDE87/G/pUilHRJV2acBAcngY3c/MRMKrXQb8lx99k7dENU
Yc8ywQ==</InverseQ><D>KAL6cwkCQKgbuvKFRNSLZmFOqV2JpB5kI/p1U+0GWAs6Qi4wnPqy+53O3naOa2faPc
tXLSKJqvlvSz21VDMUCsyphvOSxBtc1cZHJp4ueQPA7u+qrIJaDY1RhlAVoqNfCJFX6+McVJ+I/X+mZOCtdUaCuA
oNn014UYOaMujYDQE=</D></RSAKeyValue>"

 strEncryptedPassword = DicVal("01" & "ConnectionPassword", "SQL")

 If Len(strEncryptedPassword) > 0 Then

 strOpenPassword = theCedarCryptographyHelper.Decode(strEncryptedPassword,
strPrivateKey)

 End If

 If Len(strOpenPassword) > 0 Then

 strConnection = strConnection + ";Password=" + strOpenPassword

 End If

4. Make sure you encrypt the script page that contains the code above via standard script
code encryption feature.

Alternatively, you leave the code above unencrypted, but place the "strPrivateKey"
variable and its initialization on another encrypted page available from the code above.

Scripting Reference Guide Chapter 8 Password Encryption for Database Connection Strings

Perceptive Intelligent Capture Page 207 of 207

5. When you release your master project to the others, distribute the public key along with
the project release - PS representatives who will be installing your project on customer
site, will use this public key to encrypt their custom passwords.

Index
Associative Search Engine 173
Creating

users, roles, and groups 25
Custom project INI file 205
Example

<Fieldn>_CellChecked 37
<Fieldn>_CellFocusChanged 37
<Fieldn>_Format 39
<Fieldn>_FormatForExport 39
<Fieldn>_PostAnalysis 40, 73, 78
<Fieldn>_PostEvaluate 40
<Fieldn>_PreExtract 40
<Fieldn>_SmartIndex 41, 162
<Fieldn>_TableHeaderClicked 42
<Fieldn>_Validate 43, 81
<Fieldn>_ValidateCell 43, 97, 98
<Fieldn>_ValidateRow 44, 109
<Fieldn>_ValidateTable 44, 112
Document_FocusChanged 32
Document_PostExtract 33
Document_PreExtract 34, 82

Document_Validate 35, 63
SCBCdrDocClass_GetFieldAnalysisSettings

150
SCBCdrFolder_FolderData 124
SCBCdrSettings_Value 166
SCBCdrTable_RowNumber 108
ScriptModule_ExportDocument 13
ScriptModule_Initialize 14
ScriptModule_PreClassify 19, 60
ScriptModule_Processbatch 20
ScriptModule_RouteDocument 24
ScriptModule_Terminate 28

Import user accounts 25
MoveDocument event 14
Multi-columnn Attribute Search 173
OriginalFileName

Retain after splitting/merging pages 122
Password Encryption 205
Retaining original file name 122
Security Update 25

	Contents
	Chapter 1 Script Event Reference
	1.1 Description - VerifierFormLoadEvent
	1.1.1. Usage

	1.2 ScriptModule
	1.2.1. Methods and Properties
	1.2.1.1. AppendWorkdoc
	1.2.1.2. BatchClose
	1.2.1.3. BatchOpen
	1.2.1.4. ExportDocument
	1.2.1.5. ForceClassificationReview
	1.2.1.6. Initialize
	1.2.1.7. MoveDocument
	1.2.1.8. PostClassify
	1.2.1.9. PostImportBatch
	1.2.1.10. PreClassify
	1.2.1.11. PreClassifyAnalysis
	1.2.1.12. ProcessBatch
	1.2.1.13. RouteDocument
	1.2.1.14. SecurityUpdateAddUserGroup
	1.2.1.15. SecurityUpdateCommit
	1.2.1.16. SecurityUpdateStart
	1.2.1.17. Terminate
	1.2.1.18. UpdateSystemSecurity
	1.2.1.19. VerifierClassify
	1.2.1.20. VerifierFormLoad

	1.3 Document
	1.3.1. FocusChanged
	1.3.2. OnAction
	1.3.3. PostExtract
	1.3.4. PreExtract
	1.3.5. PreVerifierTrain
	1.3.6. Validate
	1.3.7. VerifierTrain

	1.4 <Fieldn> (Cedar FieldDef Event Interface)
	1.4.1. CellChecked
	1.4.2. CellFocusChanged
	1.4.3. Format
	1.4.4. FormatForExport
	1.4.5. PostAnalysis
	1.4.6. PostEvaluate
	1.4.7. PreExtract
	1.4.8. SmartIndex
	1.4.9. TableHeaderClicked
	1.4.10. Validate
	1.4.11. ValidateCell
	1.4.12. ValidateRow
	1.4.13. ValidateTable

	Chapter 2 Workdoc Object Reference (SCBCdrWorkdocLib)
	2.1 SCBCdrWorkdoc
	2.1.1. Description
	2.1.2. Type Definitions
	2.1.3. Methods and Properties

	2.2 SCBCdrFields
	2.2.1. Description
	2.2.2. Methods and Properties

	2.3 SCBCdrField
	2.3.1. Description
	2.3.2. Type Definitions
	2.3.3. Methods and Properties

	2.4 SCBCdrCandidate
	2.4.1. Description
	2.4.2. Methods and Properties

	2.5 SCBCdrTable
	2.5.1. Descriptions
	2.5.2. Type Definitions
	2.5.3. Methods and Properties

	2.6 SCBCdrTextblock
	2.6.1. Description
	2.6.2. Methods and properties

	2.7 SCBCdrWord
	2.7.1. Description
	2.7.2. Methods and Properties

	2.8 SCBCdrDocPage
	2.8.1. Description
	2.8.2. Type Definitions
	2.8.3. Methods and Properties

	2.9 SCBCdrFolder
	2.9.1. Description
	2.9.2. Methods and Properties

	Chapter 3 Cedar Project Object Reference (SCBCdrPROJLib)
	3.1 Description
	3.2 Type Definitions
	3.2.1. Methods and Properties

	3.3 SCBCdrDocClasses
	3.3.1. Description
	3.3.2. Methods and Properties

	3.4 SCBCdrDocClass
	3.4.1. Description
	3.4.2. Type Definitions
	3.4.3. Methods and Properties

	3.5 SCBCdrFieldDefs
	3.5.1. Description
	3.5.2. Methods and Properties

	3.6 SCBCdrFieldDef
	3.6.1. Description
	3.6.2. Type Definitions
	3.6.3. Methods and Properties

	3.7 SCBCdrSettings
	3.7.1. Description
	3.7.2. Methods and Properties

	3.8 SCBCdrScriptModule
	3.8.1. Description
	3.8.2. Methods and Properties

	3.9 SCBCdrScriptProject
	3.9.1. Description
	3.9.2. Methods and Properties

	3.10 SCBCdrScriptAccess
	3.10.1. Description
	3.10.2. Methods and Properties

	Chapter 4 (CDRADSLib)
	4.1 SCBCdrSupExSettings
	4.1.1. Description
	4.1.2. Methods and Properties

	Chapter 5 Analysis Engines Object Reference
	5.1 SCBCdrAssociativeDbExtractionSettings
	5.1.1. Description
	5.1.2. Type Definitions
	5.1.3. Method and Properties

	Chapter 6 StringComp Object Reference (SCBCdrSTRCOMPLib)
	6.1 SCBCdrStringComp
	6.1.1. Description
	6.1.2. Type Definitions
	6.1.3. Methods and Properties

	6.2 SCBCdrEmailProperties
	6.2.1. Description
	6.2.2. Properties

	6.3 SCBCdrLicenseInfoAccess
	6.3.1. Description
	6.3.2. Methods

	Chapter 7 Cedar Verifier Component Library
	7.1 SCBCdrVerificationForm
	7.1.1. Description
	7.1.2. Methods and Properties

	7.2 SCBCdrVerificationField
	7.2.1. Description
	7.2.2. Type Definitions
	7.2.3. Methods and Properties

	7.3 SCBCdrVerificationTable
	7.3.1. Description
	7.3.2. Methods and Properties

	7.4 SCBCdrVerificationButton
	7.4.1. Description
	7.4.2. Methods and Properties

	7.5 SCBCdrVerificationLabel
	7.5.1. Description
	7.5.2. Properties

	Chapter 8 Password Encryption for Database Connection Strings
	8.1 Master Project Side (Project Primary Developer)
	Prerequisites
	Test Public Key
	Test Private Key

	Implementation Guidelines

